a function which is monotone in an open interval but it is not continuously differentiable at that interval.

$f(x) =10x + x^2 Cos(1/x) \forall x \neq 0$ , $0$ otherwise

.

take $N = (-0.5 , 0.5)$ and $f'(0) =10 , f'(x) > 0 \forall x \in N$ And $f'(x)$ is not continuous at $0$ .


Let $$g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0.\end{cases}$$ Then $$g'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0.\end{cases},$$ hence $g'$ is discontinuous at $x = 0$. Note that, on the interval $(-1, 1)$, we have $$|g'(x)| \le 2|x| \cdot\left|\sin\left(\frac{1}{x}\right)\right| + \left|\cos\left(\frac{1}{x}\right)\right| \le 3.$$ Hence, if we let $$f(x) = 4x + g(x),$$ then $f'(x)$ is discontinuous at $x = 0$, and on the interval $(-1, 1)$, we have $$f'(x) = 4 + g'(x) \ge 4 - |g'(x)| \ge 4 - 3 > 0.$$