Approximate $\sqrt{e}$ by hand

I found this series representation of $e$ on Wolfram Mathworld: $$ e=\left(\sum_{k=0}^\infty\frac{4k+3}{2^{2k+1}(2k+1)!}\right)^2. $$ Hence $$ \sqrt{e}=\sum_{k=0}^\infty\frac{4k+3}{2^{2k+1}(2k+1)!}. $$ Also from Maclaurin series for exponential function $$ e^{\large\frac{1}{2}}=\sum_{n=0}^\infty\frac{1}{2^n n!}. $$


The rapidly-converging series representation of $\sqrt{e}$ in Tunk-Fey's answer can be derived from simply expressing the Maclaurin series of $e^{x}$ as the sum of its even terms plus the sum of its odd terms.

$$ \begin{align} e^{x}&= \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{x^{2n}(2n+1) + x^{2n+1}}{(2n+1)!} \\ &= \sum_{n=0}^{\infty} \frac{x^{2n}(2n+1+x)}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{x^{2n}(4n+2+2x)}{2(2n+1)!} \end{align}$$


If you apply the standard series expansion of $e^x$ to the case $x=-1/2$ and then find the reciprocal, it will converge faster than if you use $x=1/2$.