Area of Intersection between Two Circles
You might want to check out this analytical solution and apply the formula with your input values.
Another Formula is given here for when the radii are equal:
Area = r^2*(q - sin(q)) where q = 2*acos(c/2r),
where c = distance between centers and r is the common radius.
Here is an example in Python.
"""Intersection area of two circles"""
import math
from dataclasses import dataclass
from typing import Tuple
@dataclass
class Circle:
x: float
y: float
r: float
@property
def coord(self):
return self.x, self.y
def find_intersection(c1: Circle, c2: Circle) -> float:
"""Finds intersection area of two circles.
Returns intersection area of two circles otherwise 0
"""
d = math.dist(c1.coord, c2.coord)
rad1sqr = c1.r ** 2
rad2sqr = c2.r ** 2
if d == 0:
# the circle centers are the same
return math.pi * min(c1.r, c2.r) ** 2
angle1 = (rad1sqr + d ** 2 - rad2sqr) / (2 * c1.r * d)
angle2 = (rad2sqr + d ** 2 - rad1sqr) / (2 * c2.r * d)
# check if the circles are overlapping
if (-1 <= angle1 < 1) or (-1 <= angle2 < 1):
theta1 = math.acos(angle1) * 2
theta2 = math.acos(angle2) * 2
area1 = (0.5 * theta2 * rad2sqr) - (0.5 * rad2sqr * math.sin(theta2))
area2 = (0.5 * theta1 * rad1sqr) - (0.5 * rad1sqr * math.sin(theta1))
return area1 + area2
elif angle1 < -1 or angle2 < -1:
# Smaller circle is completely inside the largest circle.
# Intersection area will be area of smaller circle
# return area(c1_r), area(c2_r)
return math.pi * min(c1.r, c2.r) ** 2
return 0
if __name__ == "__main__":
@dataclass
class Test:
data: Tuple[Circle, Circle]
expected: float
tests = [
Test((Circle(2, 4, 2), Circle(3, 9, 3)), 0),
Test((Circle(0, 0, 2), Circle(-1, 1, 2)), 7.0297),
Test((Circle(1, 3, 2), Circle(1, 3, 2.19)), 12.5664),
Test((Circle(0, 0, 2), Circle(-1, 0, 2)), 8.6084),
Test((Circle(4, 3, 2), Circle(2.5, 3.5, 1.4)), 3.7536),
Test((Circle(3, 3, 3), Circle(2, 2, 1)), 3.1416)
]
for test in tests:
result = find_intersection(*test.data)
assert math.isclose(result, test.expected, rel_tol=1e-4), f"{test=}, {result=}"
print("PASSED!!!")
Here is a JavaScript function that does exactly what Chris was after:
function areaOfIntersection(x0, y0, r0, x1, y1, r1)
{
var rr0 = r0 * r0;
var rr1 = r1 * r1;
var d = Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
var phi = (Math.acos((rr0 + (d * d) - rr1) / (2 * r0 * d))) * 2;
var theta = (Math.acos((rr1 + (d * d) - rr0) / (2 * r1 * d))) * 2;
var area1 = 0.5 * theta * rr1 - 0.5 * rr1 * Math.sin(theta);
var area2 = 0.5 * phi * rr0 - 0.5 * rr0 * Math.sin(phi);
return area1 + area2;
}
However, this method will return NaN if one circle is completely inside the other, or they are not touching at all. A slightly different version that doesn't fail in these conditions is as follows:
function areaOfIntersection(x0, y0, r0, x1, y1, r1)
{
var rr0 = r0 * r0;
var rr1 = r1 * r1;
var d = Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
// Circles do not overlap
if (d > r1 + r0)
{
return 0;
}
// Circle1 is completely inside circle0
else if (d <= Math.abs(r0 - r1) && r0 >= r1)
{
// Return area of circle1
return Math.PI * rr1;
}
// Circle0 is completely inside circle1
else if (d <= Math.abs(r0 - r1) && r0 < r1)
{
// Return area of circle0
return Math.PI * rr0;
}
// Circles partially overlap
else
{
var phi = (Math.acos((rr0 + (d * d) - rr1) / (2 * r0 * d))) * 2;
var theta = (Math.acos((rr1 + (d * d) - rr0) / (2 * r1 * d))) * 2;
var area1 = 0.5 * theta * rr1 - 0.5 * rr1 * Math.sin(theta);
var area2 = 0.5 * phi * rr0 - 0.5 * rr0 * Math.sin(phi);
// Return area of intersection
return area1 + area2;
}
}
I wrote this function by reading the information found at the Math Forum. I found this clearer than the Wolfram MathWorld explanation.
Okay, using the Wolfram link and Misnomer's cue to look at equation 14, I have derived the following Java solution using the variables I listed and the distance between the centers (which can trivially be derived from them):
Double r = radius1;
Double R = radius2;
Double d = distance;
if(R < r){
// swap
r = radius2;
R = radius1;
}
Double part1 = r*r*Math.acos((d*d + r*r - R*R)/(2*d*r));
Double part2 = R*R*Math.acos((d*d + R*R - r*r)/(2*d*R));
Double part3 = 0.5*Math.sqrt((-d+r+R)*(d+r-R)*(d-r+R)*(d+r+R));
Double intersectionArea = part1 + part2 - part3;