Area of x^2 + y with {x, y} ∈ ImplicitRegion[x^2 + y^2 < 2, {x, y}]
I believe the question is about the area of a surface. If that's the case, the answer is as follows:
surface = ImplicitRegion[x^2 + y == z && x^2 + y^2 < 2, {x, y, z}]
This is a 2D region embedded in 3D space:
RegionDimension[surface]
RegionEmbeddingDimension[surface]
(*2*)
(*3*)
The area is found by using RegionMeasure
:
RegionMeasure[surface]
N[%, 10]
(*2/3 Sqrt[2] (3 EllipticE[-4] + 5 EllipticK[-4])*)
(*12.21203137*)
Integrate[x*x + y, {x, y} ∈ Disk[{0, 0}, Sqrt [2]]]
which returns $\pi$.
However, if it is school work, the "manual" way to do that is a change of variable like this one: $(x,y)=(r\cos \theta,r\sin \theta)$
After Jacobian calculation you get:
Integrate[r*(r*r*Cos[θ]^2 + r*Sin[θ]), {r, 0, Sqrt[2]}, {θ, 0, 2 π}]
Which (fortunately) also gives $\pi$
Update: Now if you want area of the surface, you can use this formula: $$ \int_\Omega \| \left( \begin{array}{c} 1 \\ 0 \\ \partial_x f \end{array} \right)\times \left( \begin{array}{c} 0 \\ 1 \\ \partial_y f \end{array} \right) \| dxdy $$ with $\Omega$ your centered disk of radius $\sqrt{2}$ and $f:(x,y)\rightarrow x^2+y$. You get, after change of variable $$ \int_0^\sqrt{2}\int_0^{2\pi} r \sqrt{4 r^2 \cos ^2(\theta )+2}\ drd\theta $$ which unfortunately involves Elliptic functions...
Under Mathematica:
f[x_, y_] := x*x + y
vx = D[{x, y, f[x, y]}, x];
vy = D[{x, y, f[x, y]}, y];
dareaCartesian =
Simplify[Norm[Cross[vx, vy], 2], Assumptions -> {x ∈ Reals}]
dareaPolar =
r*Simplify[dareaCartesian /. x -> r*Cos[θ] /. y -> r*Sin[θ] ]
area = Integrate[dareaPolar, {r, 0, Sqrt[2]}, {θ, 0, 2*Pi}]
N[area]
which prints: $$ \sqrt{4 x^2+2} $$ $$ r \sqrt{4 r^2 \cos ^2(\theta )+2} $$ $$ \frac{2}{3} \sqrt{2} (5 EllipticK(-4)+3 EllipticE(-4)) $$ $$ 12.212 $$
Integrate[(x^2 + y) Boole[x^2 + y^2 < 2], {x, -Infinity,
Infinity}, {y, -Infinity, Infinity}]
Pi
(* If you want a plot, do this: *)
Plot3D[(x^2 + y) Boole[x^2 + y^2 < 2], {x, -Sqrt[2],
Sqrt[2]}, {y, -Sqrt[2], Sqrt[2]},
RegionFunction -> (#1^2 + #2^2 < 2 &), Filling -> Axis,
FillingStyle -> Directive[Gray, Opacity[0.2]]]