Best way to get the max value in a Spark dataframe column
Remark: Spark is intended to work on Big Data - distributed computing. The size of the example DataFrame is very small, so the order of real-life examples can be altered with respect to the small example.
Slowest: Method_1, because .describe("A")
calculates min, max, mean, stddev, and count (5 calculations over the whole column).
Medium: Method_4, because, .rdd
(DF to RDD transformation) slows down the process.
Faster: Method_3 ~ Method_2 ~ Method_5, because the logic is very similar, so Spark's catalyst optimizer follows very similar logic with minimal number of operations (get max of a particular column, collect a single-value dataframe; .asDict()
adds a little extra-time comparing 2, 3 vs. 5)
import pandas as pd
import time
time_dict = {}
dfff = self.spark.createDataFrame([(1., 4.), (2., 5.), (3., 6.)], ["A", "B"])
#-- For bigger/realistic dataframe just uncomment the following 3 lines
#lst = list(np.random.normal(0.0, 100.0, 100000))
#pdf = pd.DataFrame({'A': lst, 'B': lst, 'C': lst, 'D': lst})
#dfff = self.sqlContext.createDataFrame(pdf)
tic1 = int(round(time.time() * 1000))
# Method 1: Use describe()
max_val = float(dfff.describe("A").filter("summary = 'max'").select("A").collect()[0].asDict()['A'])
tac1 = int(round(time.time() * 1000))
time_dict['m1']= tac1 - tic1
print (max_val)
tic2 = int(round(time.time() * 1000))
# Method 2: Use SQL
dfff.registerTempTable("df_table")
max_val = self.sqlContext.sql("SELECT MAX(A) as maxval FROM df_table").collect()[0].asDict()['maxval']
tac2 = int(round(time.time() * 1000))
time_dict['m2']= tac2 - tic2
print (max_val)
tic3 = int(round(time.time() * 1000))
# Method 3: Use groupby()
max_val = dfff.groupby().max('A').collect()[0].asDict()['max(A)']
tac3 = int(round(time.time() * 1000))
time_dict['m3']= tac3 - tic3
print (max_val)
tic4 = int(round(time.time() * 1000))
# Method 4: Convert to RDD
max_val = dfff.select("A").rdd.max()[0]
tac4 = int(round(time.time() * 1000))
time_dict['m4']= tac4 - tic4
print (max_val)
tic5 = int(round(time.time() * 1000))
# Method 5: Use agg()
max_val = dfff.agg({"A": "max"}).collect()[0][0]
tac5 = int(round(time.time() * 1000))
time_dict['m5']= tac5 - tic5
print (max_val)
print time_dict
Result on an edge-node of a cluster in milliseconds (ms):
small DF (ms): {'m1': 7096, 'm2': 205, 'm3': 165, 'm4': 211, 'm5': 180}
bigger DF (ms): {'m1': 10260, 'm2': 452, 'm3': 465, 'm4': 916, 'm5': 373}
Another way of doing it:
df.select(f.max(f.col("A")).alias("MAX")).limit(1).collect()[0].MAX
On my data, I got this benchmarks:
df.select(f.max(f.col("A")).alias("MAX")).limit(1).collect()[0].MAX
CPU times: user 2.31 ms, sys: 3.31 ms, total: 5.62 ms
Wall time: 3.7 s
df.select("A").rdd.max()[0]
CPU times: user 23.2 ms, sys: 13.9 ms, total: 37.1 ms
Wall time: 10.3 s
df.agg({"A": "max"}).collect()[0][0]
CPU times: user 0 ns, sys: 4.77 ms, total: 4.77 ms
Wall time: 3.75 s
All of them give the same answer
Max value for a particular column of a dataframe can be achieved by using -
your_max_value = df.agg({"your-column": "max"}).collect()[0][0]
>df1.show()
+-----+--------------------+--------+----------+-----------+
|floor| timestamp| uid| x| y|
+-----+--------------------+--------+----------+-----------+
| 1|2014-07-19T16:00:...|600dfbe2| 103.79211|71.50419418|
| 1|2014-07-19T16:00:...|5e7b40e1| 110.33613|100.6828393|
| 1|2014-07-19T16:00:...|285d22e4|110.066315|86.48873585|
| 1|2014-07-19T16:00:...|74d917a1| 103.78499|71.45633073|
>row1 = df1.agg({"x": "max"}).collect()[0]
>print row1
Row(max(x)=110.33613)
>print row1["max(x)"]
110.33613
The answer is almost the same as method3. but seems the "asDict()" in method3 can be removed