Blind binary adder

Python 3, 5 calls, 92 pairs, 922 bytes

Python 3, 5 calls, 134 pairs, 3120 bytes

Python 3, 6 calls, 106 pairs, 2405 bytes

[JavaScript (Node.js)], 9 calls, 91 pairs, 1405 bytes

JavaScript (Node.js), 16 calls, 31 pairs, 378 bytes

def add(F,a,b):r=[];p=lambda x:(x,x);q=lambda u,v,t:([u,v]+t[0],[u,v]+t[1]);s=lambda c,k,n:([e[j][n]for j in range(k,-1,-1)]+[f[n]],[c]+f[n-k:n+1]);t=lambda c,k,n:q(a[n],b[n],s(c,k,n-1));z=F([p([a[i],b[i]])for i in range(16)]+[([a[i]],[b[i]])for i in range(16)]);e=[z[0:16]];f=z[16:32];r+=[e[0][0]];c=f[0];z=F([p([a[1],b[1],c]),([e[0][1],f[1]],[c,f[1]])]+[([e[0][i]],[e[0][i-1]])for i in range(3,16)]);r+=[z[0]];c=z[1];e+=[[0]*3+z[2:15]];z=F([p([a[2],b[2],c]),t(c,0,3),s(c,1,3)]+[([e[j][i]],[e[1][i-j-1]])for j in range(2)for i in range(6+j,16)]);r+=z[0:2];c=z[2];e+=u(2,4,z[3:]);z=F([p([a[4],b[4],c])]+[t(c,i,i+5)for i in range(0,3)]+[s(c,3,7)]+[([e[j][i]],[e[3][i-j-1]])for j in range(4)for i in range(12+j,16)]);r+=z[0:4];c=z[4];e+=u(4,8,z[5:]);z=F([p([a[8],b[8],c])]+[t(c,i,i+9) for i in range(0,7)]);return r+z
def u(b,e,z):
	j=0;w=[0]*(e-b)
	for i in range(b,e):w[i-b]=[0]*(i+e)+z[j:j+16-(i+e)];j+=16-(i+e)
	return w

Try it online!

FIRST VERSION Okay that's not golfed. It's just an adaptation of @ngn's code.

The only idea here is that you don't need to compute the last carry since you discard overflow. Also, the calls of F are grouped by two. Maybe they may be grouped in another way, but I doubt you can reduce significantly the number of pairs, due to the nature of the basic addition algorithm.

EDIT: Still not golfed. The number of pairs could certainly be reduced, and probably the number of calls too. See https://gist.github.com/jferard/864f4be6e4b63979da176bff380e6c62 for a "proof" with sympy.

EDIT 2 Switched to Python because it's more readable for me. Now I have got the general formula, I think I may reach the limit of 5 (maybe 4) calls.

EDIT 3 Here are the basic bricks:

alpha[i] = a[i] ^ b[i]
beta[i] = a[i] * b[i]
c[0] = beta[0]
r[0] = alpha[0]

The general formula is:

c[i] = alpha[i]*c[i-1] ^ beta[i]
r[i] = a[i] ^ b[i] ^ c[i-1]

The expanded version is:

c[0] = beta[0]
c[1] = alpha[1]*beta[0] ^ beta[1]
c[2] = alpha[2]*alpha[1]*beta[0] ^ alpha[2]*beta[1] ^ beta[2]
c[3] = alpha[3]*alpha[2]*alpha[1]*beta[0] ^ alpha[3]*alpha[2]*beta[1] ^ alpha[3]*beta[2] ^ beta[3]
...
c[i] = alpha[i]*...*alpha[1]*beta[0] ^ alpha[i]*...*alpha[2]*beta[1] ^ .... ^ alpha[i]*beta[i-1] ^ beta[i]

5 calls seems the limit for me. Now I have a little work to remove pairs and golf it!

EDIT 4 I golfed this one.

Ungolfed version:

def add(F, a, b):
    r=[]
    # p is a convenient way to express x1^x2^...x^n
    p = lambda x:(x,x)
    # q is a convenient way to express a[i]^b[i]^carry[i-1]
    q = lambda u,v,t:([u,v]+t[0],[u,v]+t[1])

    # step1: the basic bricks
    z=F([p([a[i],b[i]]) for i in range(16)]+[([a[i]],[b[i]]) for i in range(16)])
    alpha=z[0:16];beta=z[16:32]
    r.append(alpha[0])
    c = beta[0]

    # step 2
    z=F([
        p([a[1],b[1],c]),
        ([alpha[1],beta[1]],[c,beta[1]])
        ]+[([alpha[i]],[alpha[i-1]]) for i in range(3,16)])
    r.append(z[0])
    c = z[1] # c[1]
    alpha2=[0]*3+z[2:15]
    assert len(z)==15, len(z)

    # step 3
    t0=([alpha[2],beta[2]],[c,beta[2]])
    t1=([alpha2[3],alpha[3],beta[3]],[c,beta[2],beta[3]])
    z=F([
        p([a[2],b[2],c]),
        q(a[3],b[3],t0),
        t1]+
        [([alpha[i]],[alpha2[i-1]]) for i in range(6,16)]+
        [([alpha2[i]],[alpha2[i-2]]) for i in range(7,16)])
    r.extend(z[0:2])
    c = z[2] # c[3]
    alpha3=[0]*6+z[3:13]
    alpha4=[0]*7+z[13:22]
    assert len(z)==22, len(z)

    # step 4
    t0=([alpha[4],beta[4]],[c,beta[4]])
    t1=([alpha2[5],alpha[5],beta[5]],[c,beta[4],beta[5]])
    t2=([alpha3[6],alpha2[6],alpha[6],beta[6]],[c,beta[4],beta[5],beta[6]])
    t3=([alpha4[7],alpha3[7],alpha2[7],alpha[7],beta[7]],[c,beta[4],beta[5],beta[6],beta[7]])
    z=F([
        p([a[4],b[4],c]),
        q(a[5],b[5],t0),
        q(a[6],b[6],t1),
        q(a[7],b[7],t2),
        t3]+
        [([alpha[i]],[alpha4[i-1]]) for i in range(12,16)]+
        [([alpha2[i]],[alpha4[i-2]]) for i in range(13,16)]+
        [([alpha3[i]],[alpha4[i-3]]) for i in range(14,16)]+
        [([alpha4[i]],[alpha4[i-4]]) for i in range(15,16)])
    r.extend(z[0:4])
    c = z[4] # c[7]
    alpha5 = [0]*12+z[5:9]
    alpha6 = [0]*13+z[9:12]
    alpha7 = [0]*14+z[12:14]
    alpha8 = [0]*15+z[14:15]
    assert len(z) == 15, len(z)

    # step 5
    t0=([alpha[8],beta[8]],[c,beta[8]])
    t1=([alpha2[9],alpha[9],beta[9]],[c,beta[8],beta[9]])
    t2=([alpha3[10],alpha2[10],alpha[10],beta[10]],[c,beta[8],beta[9],beta[10]])
    t3=([alpha4[11],alpha3[11],alpha2[11],alpha[11],beta[11]],[c,beta[8],beta[9],beta[10],beta[11]])
    t4=([alpha5[12],alpha4[12],alpha3[12],alpha2[12],alpha[12],beta[12]],[c,beta[8],beta[9],beta[10],beta[11],beta[12]])
    t5=([alpha6[13],alpha5[13],alpha4[13],alpha3[13],alpha2[13],alpha[13],beta[13]],[c,beta[8],beta[9],beta[10],beta[11],beta[12],beta[13]])
    t6=([alpha7[14],alpha6[14],alpha5[14],alpha4[14],alpha3[14],alpha2[14],alpha[14],beta[14]],[c,beta[8],beta[9],beta[10],beta[11],beta[12],beta[13],beta[14]])
    t7=([alpha8[15],alpha7[15],alpha6[15],alpha5[15],alpha4[15],alpha3[15],alpha2[15],alpha[15],beta[15]],[c,beta[8],beta[9],beta[10],beta[11],beta[12],beta[13],beta[14],beta[15]])

    z=F([
        p([a[8],b[8],c]),
        q(a[9],b[9],t0),
        q(a[10],b[10],t1),
        q(a[11],b[11],t2),
        q(a[12],b[12],t3),
        q(a[13],b[13],t4),
        q(a[14],b[14],t5),
        q(a[15],b[15],t6)
    ])
    r.extend(z)
    return r

Try it online!


Haskell, 1 call (cheating???), 32 pairs (could be improved), 283 bytes (same)

Please don't be angry with me, I don't want to win with this, but I was encouraged in the remarks to the challenge to explain what I was talking about.

I tried to use the state monad to handle adding boxes and counting calls and pairs, and that worked, but I didn't manage to make my solution working in that setting. So I did what was also suggested in the comments: just hide the data behind a data constructor and don't peek. (The clean way would be to use a seperate module and not export the constructor.) This version has the advantage of being much simpler.

Since we are talking about boxes of bits, I put Bool values into them. I define zero as the given box with the zero bit - a one is not needed.

import Debug.Trace

data B = B { unB :: Bool }

zero :: B
zero = B False

f :: [([B],[B])] -> [B]
f pairs =  trace ("f was called with " ++ show (length pairs) ++ " pairs") $
           let (B i) &&& (B j) = i && j
           in map (\(x,y) ->  B ( foldl1 (/=) (zipWith (&&&) x y))) pairs

We're using the debugging function trace to see how often f was called, and with how many pairs. &&& looks into the boxes by pattern matching, the inequality /= used on Bool values is xor.

bits :: Int -> [Bool]
bits n = bitsh n 16
  where bitsh _ 0 = []
        bitsh n k = odd n : bitsh (n `div` 2) (k-1)

test :: ( [B] -> [B] -> [B] ) -> Int -> Int -> Bool
test bba n m = let x = map B (bits n)
                   y = map B (bits m)
                   r = bba x y
                   res = map unB r
               in res==bits(n+m)

The test function takes a blind binary adder as first argument, and then two numbers for which addition is tested. It returns a Bool indicating whether the test was successful. First the input boxes are created, then the adder is called, the result unboxed (with unB) and compared with the expected result.

I implemented two adders, the sample solution simple, so that we can see that the debug output works correctly, and my solution using value recursion valrec.

simple a b = let [r0] = f [([a!!0,b!!0],[a!!0,b!!0])]
                 [c]  = f [([a!!0],[b!!0])]
             in loop 1 [r0] c
             where loop 16 rs _ = rs
                   loop i  rs c = let [ri] = f [([a!!i,b!!i,c],[a!!i,b!!i,c])]
                                      [c'] = f [([a!!i,b!!i,c],[b!!i,c,a!!i])]
                                  in loop (i+1) (rs++[ri]) c'

valrec a b =
    let res = f (pairs res a b)
    in [ res!!i | i<-[0,2..30] ]
  where pairs res a b =
           let ts = zipWith3 (\x y z -> [x,y,z])
                             a b (zero : [ res!!i | i<-[1,3..29] ]) in
           [ p | t@(h:r) <- ts, p <- [ (t,t), (t,r++[h]) ] ]

See how I'm defining res in terms of itself? That is also known as tying the knot.

Now we can see how f is only called once:

*Main> test valrec 123 456
f was called with 32 pairs
True

Or replace valrec by simple to see f being called 32 times.

Try it online! (the tracing output appears under "Debug")