block matrix multiplication
It depends on how you partition it, not all partitions work. For example, if you partition these two matrices
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \begin{bmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{bmatrix} $$
in this way
$$ \left[\begin{array}{c|cc}a&b&c\\ d&e&f\\ \hline g&h&i \end{array}\right], \left[\begin{array}{c|cc}a'&b'&c'\\ d'&e'&f'\\ \hline g'&h'&i' \end{array}\right] $$
and then multiply them, it won't work. But this would
$$\left[\begin{array}{c|cc}a&b&c\\ \hline d&e&f\\ g&h&i \end{array}\right] ,\left[\begin{array}{c|cc}a'&b'&c'\\ \hline d'&e'&f'\\ g'&h'&i' \end{array}\right] $$
What's the difference? Well, in the first case, all submatrix products are not defined, like $\begin{bmatrix} a \\ d \\ \end{bmatrix}$ cannot be multiplied with $\begin{bmatrix} a' \\ d' \\ \end{bmatrix}$
So, what is the general rule? (Taken entirely from the Wiki page on Block matrix)
Given, an $(m \times p)$ matrix $\mathbf{A}$ with $q$ row partitions and $s$ column partitions $$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots &\mathbf{A}_{1s}\\ \mathbf{A}_{21} & \mathbf{A}_{22} & \cdots &\mathbf{A}_{2s}\\ \vdots & \vdots & \ddots &\vdots \\ \mathbf{A}_{q1} & \mathbf{A}_{q2} & \cdots &\mathbf{A}_{qs}\end{bmatrix}$$
and a $(p \times n)$ matrix $\mathbf{B}$ with $s$ row partitions and $r$ column parttions
$$\begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \cdots &\mathbf{B}_{1r}\\ \mathbf{B}_{21} & \mathbf{B}_{22} & \cdots &\mathbf{B}_{2r}\\ \vdots & \vdots & \ddots &\vdots \\ \mathbf{B}_{s1} & \mathbf{B}_{s2} & \cdots &\mathbf{B}_{sr}\end{bmatrix}$$
that are compatible with the partitions of $\mathbf{A}$, the matrix product
$ \mathbf{C}=\mathbf{A}\mathbf{B} $
can be formed blockwise, yielding $\mathbf{C}$ as an $(m\times n)$ matrix with $q$ row partitions and $r$ column partitions.