Bug in Integrate?
I believe the integral in question converges conditionally and can be calculated after substituting $x = \cosh(t)$, giving (on the integration domain) $$t = \text{arccosh}(x), \;\; dt = \frac{dx}{\sqrt{x^2-1}}.$$
Integrate[Sin[x]/Sqrt[x^2 - 1], {x, 1, ∞}]
1/2 π BesselJ[0, 1]
N[%]
1.20197
We can numerically integrate over a large finite range, forcing each zero to be integrated over. This will ensure we're not skipping over any peaks or valleys.
NIntegrate[Sin[Cosh[t]], {t, ##}] & @@ Prepend[ArcCosh[π Range[10000]], 0]
1.20194
This extended syntax of NIntegrate
is discussed here.
Using the undocumented function Integrate`InverseIntegrate[]
:
Integrate`InverseIntegrate[Sin[Cosh[t]], {t, 0, ∞}]
1/2 π BesselJ[0, 1]
N[%, 20]
1.2019697153172064991
which is consistent with Chip's reformulation:
NIntegrate[Sin[x]/Sqrt[x^2 - 1], {x, 1, ∞},
Method -> "DoubleExponentialOscillatory", WorkingPrecision -> 20]
1.2019697153164287403