Builder Pattern and Inheritance

This is certainly possible with the recursive bound, but the subtype builders need to also be generic, and you need a few interim abstract classes. It's a little bit cumbersome, but it's still easier than the non-generic version.

/**
 * Extend this for Mammal subtype builders.
 */
abstract class GenericMammalBuilder<B extends GenericMammalBuilder<B>> {
    String sex;
    String name;

    B sex(String sex) {
        this.sex = sex;
        return self();
    }

    B name(String name) {
        this.name = name;
        return self();
    }

    abstract Mammal build();

    @SuppressWarnings("unchecked")
    final B self() {
        return (B) this;
    }
}

/**
 * Use this to actually build new Mammal instances.
 */
final class MammalBuilder extends GenericMammalBuilder<MammalBuilder> {
    @Override
    Mammal build() {
        return new Mammal(this);
    }
}

/**
 * Extend this for Rabbit subtype builders, e.g. LopBuilder.
 */
abstract class GenericRabbitBuilder<B extends GenericRabbitBuilder<B>>
        extends GenericMammalBuilder<B> {
    Color furColor;

    B furColor(Color furColor) {
        this.furColor = furColor;
        return self();
    }

    @Override
    abstract Rabbit build();
}

/**
 * Use this to actually build new Rabbit instances.
 */
final class RabbitBuilder extends GenericRabbitBuilder<RabbitBuilder> {
    @Override
    Rabbit build() {
        return new Rabbit(this);
    }
}

There's a way to avoid having the "concrete" leaf classes, where if we had this:

class MammalBuilder<B extends MammalBuilder<B>> {
    ...
}
class RabbitBuilder<B extends RabbitBuilder<B>>
        extends MammalBuilder<B> {
    ...
}

Then you need to create new instances with a diamond, and use wildcards in the reference type:

static RabbitBuilder<?> builder() {
    return new RabbitBuilder<>();
}

That works because the bound on the type variable ensures that all the methods of e.g. RabbitBuilder have a return type with RabbitBuilder, even when the type argument is just a wildcard.

I'm not much of a fan of that, though, because you need to use wildcards everywhere, and you can only create a new instance using the diamond or a raw type. I suppose you end up with a little awkwardness either way.


And by the way, about this:

@SuppressWarnings("unchecked")
final B self() {
    return (B) this;
}

There's a way to avoid that unchecked cast, which is to make the method abstract:

abstract B self();

And then override it in the leaf subclass:

@Override
RabbitBuilder self() { return this; }

The issue with doing it that way is that although it's more type-safe, the subclass can return something other than this. Basically, either way, the subclass has the opportunity to do something wrong, so I don't really see much of a reason to prefer one of those approaches over the other.


Confronted with the same issue, I used the solution proposed by emcmanus at: https://community.oracle.com/blogs/emcmanus/2010/10/24/using-builder-pattern-subclasses

I'm just recopying his/her preferred solution here. Let say we have two classes, Shape and Rectangle. Rectangle inherits from Shape.

public class Shape {

    private final double opacity;

    public double getOpacity() {
        return opacity;
    }

    protected static abstract class Init<T extends Init<T>> {
        private double opacity;

        protected abstract T self();

        public T opacity(double opacity) {
            this.opacity = opacity;
            return self();
        }

        public Shape build() {
            return new Shape(this);
        }
    }

    public static class Builder extends Init<Builder> {
        @Override
        protected Builder self() {
            return this;
        }
    }

    protected Shape(Init<?> init) {
        this.opacity = init.opacity;
    }
}

There is the Init inner class, which is abstract, and the Builder inner class, that is an actual implementation. Will be useful when implementing the Rectangle:

public class Rectangle extends Shape {
    private final double height;

    public double getHeight() {
        return height;
    }

    protected static abstract class Init<T extends Init<T>> extends Shape.Init<T> {
        private double height;

        public T height(double height) {
            this.height = height;
            return self();
        }

        public Rectangle build() {
            return new Rectangle(this);
        }
    }

    public static class Builder extends Init<Builder> {
        @Override
        protected Builder self() {
            return this;
        }
    }

    protected Rectangle(Init<?> init) {
        super(init);
        this.height = init.height;
    }
}

To instantiate the Rectangle:

new Rectangle.Builder().opacity(1.0D).height(1.0D).build();

Again, an abstract Init class, inheriting from Shape.Init, and a Build that is the actual implementation. Each Builder class implement the self method, which is responsible to return a correctly cast version of itself.

Shape.Init <-- Shape.Builder
     ^
     |
     |
Rectangle.Init <-- Rectangle.Builder