C++ abstract base class constructors/destructors - general correctness
C++ does not allow for virtual constructors. A simple implementation (without the virtual constructor) would look something like this:
class ICommand {
public:
virtual ~ICommand() = 0;
virtual void callMe() = 0;
virtual void callMe2() = 0;
};
ICommand::~ICommand() { } // all destructors must exist
Note that even a pure virtual destructor must be defined.
A concrete implementation would look exactly like your example:
class MyCommand : public ICommand {
public:
virtual void callMe() { }
virtual void callMe2() { }
};
You have a couple of options for the constructor. One option is to disable the default constructor for ICommand
, so that subclasses will have to implement a constructor that calls your ICommand constructor:
#include <string>
class ICommand {
private:
const std::string name;
ICommand();
public:
ICommand(const std::string& name) : name(name) { }
virtual ~ICommand() = 0;
virtual void callMe() = 0;
virtual void callMe2() = 0;
};
ICommand::~ICommand() { } // all destructors must exist
A concrete implementation would now look something like this:
class MyCommand : public ICommand {
public:
MyCommand(const std::string& name) : ICommand(name) { }
virtual void callMe() { }
virtual void callMe2() { }
};
I know this one is old, but it is still my first hit on this issue. This is how I would do it.
Interface header foo.h:
#pragma once
#include <memory>
enum class Implementations {Simple, Fancy};
class Foo
{
public:
using Ptr = std::unique_ptr<Foo>;
virtual ~Foo() = default;
virtual void do_it() = 0;
};
Foo::Ptr create_foo(Implementations impl); // factory
Yes I know that "pragma once" is strictly speaking not standard, but it works for me.
Note that nothing is implemented here. There is no constructor: an abstract class can not be instantiated. You get a pointer to the interface through the factory. For the virtual function calls to work, they must be called through a pointer. The virtual destructor is defaulted because it doesn't have to do anything special except polymorphing to the implementation. The factory is a free function. No need to try to make it a static member or something like that. This is not java.
Interface foo.cpp:
#include "foo.h"
#include "foo_impl.h"
Foo::Ptr create_foo(Implementations impl)
{
switch (impl)
{
case Implementations::Simple:
return std::make_unique<Simple_foo>();
case Implementations::Fancy:
return std::make_unique<Fancy_foo>();
default:
return nullptr;
}
}
Here the factory is implemented. Notice that the factory has to know the implementation(s). That is why we don't implement it inline: if it was inline, the interface header would have to include the implementation header, and through it, knowledge of the implementation would "leak out" to the callsite.
The implementation header foo_impl.h:
#pragma once
#include "foo.h"
class Simple_foo : public Foo
{
void do_it() override;
};
class Fancy_foo : public Foo
{
void do_it() override;
};
Nothing special, just override the virtual functions of the interface. Because this exaple is simple, I put both implementations in the same files. In real applications that will be different.
The implementation foo_impl.cpp:
#include "foo_impl.h"
#include <iostream>
void Simple_foo::do_it()
{
std::cout << "simple foo\n";
}
void Fancy_foo::do_it()
{
std::cout << "fancy foo\n";
}
Just implement the functions.
The main.cpp:
#include "foo.h"
int main()
{
auto sf = create_foo(Implementations::Simple);
sf->do_it();
auto ff = create_foo(Implementations::Fancy);
ff->do_it();
return 0;
}
Through the enum we can select the implementation we want. The pointers are of type Foo::Ptr
, an alias for std::unique_ptr<Foo>
. The callsite has no knowledge of the implementation at all, only the interface.
The output will be as expected:
simple foo
fancy foo