calculate the the limit of the sequence $a_n = \lim_{n \to \infty} n^\frac{2}{3}\cdot ( \sqrt{n-1} + \sqrt{n+1} -2\sqrt{n} )$
Keep on going... the difference between the fractions is
$$\frac{\sqrt{n-1}-\sqrt{n+1}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n})}$$
which, by similar reasoning as before (diff between two squares...), produces
$$\frac{-2}{(\sqrt{n-1}+\sqrt{n+1})(\sqrt{n+1}+\sqrt{n})(\sqrt{n-1}+\sqrt{n})}$$
Now, as $n \to \infty$, the denominator behaves as $(2 \sqrt{n})^3 = 8 n^{3/2}$. Thus, $\lim_{n \to \infty} (-1/4) n^{-3/2} n^{2/3} = \cdots$? (Is the OP sure (s)he didn't mean $n^{3/2}$ in the numerator?)