Can I simplify an expression into form which uses my own definitions?
Daniel Lichtblau and Andrzej Koslowski posted a solution in mathgroup, which I adjusted marginally. (I like to use german identifiers, because they will never clash with Mma builtins). That's the code:
SetAttributes[termErsetzung,Listable];
termErsetzung[expr_, rep_, vars_] :=
Module[{num = Numerator[expr], den = Denominator[expr],
hed = Head[expr], base, expon},
If[PolynomialQ[num, vars] && PolynomialQ[den, vars] && ! NumberQ[den],
termErsetzung[num, rep, vars]/termErsetzung[den, rep, vars], (*else*)
If[hed === Power && Length[expr] === 2,
base = termErsetzung[expr[[1]], rep, vars];
expon = termErsetzung[expr[[2]], rep, vars];
PolynomialReduce[base^expon, rep, vars][[2]], (*else*)
If[Head[Evaluate[hed]] === Symbol &&
MemberQ[Attributes[Evaluate[hed]], NumericFunction],
Map[termErsetzung[#, rep, vars] &, expr], (*else*)
PolynomialReduce[expr, rep, vars][[2]] ]]]
];
TermErsetzung[rep_Equal,vars_][expr_]:=
termErsetzung[expr,Evaluate[Subtract@@rep],vars]//Union;
Usage is like this:
a*b/(a + a*Cos[a/b]) // TermErsetzung[k b == a, b]
a/(k (1 + Cos[k]))
The first parameter is the "replacement equation", the second the variable (or list of variables) to be eliminated:
a*b/(a + a*Cos[a/b]) // TermErsetzung[k b == a, {a, b}]
{b/(1 + Cos[k]), a/(k (1 + Cos[k]))}
This general question has been raised on the main StackOverflow site. The answers to these questions may be helpful:
How to reduce the number of independent variables in mathematica
Question on “smart” replacing in mathematica
How to perform a complicated change of variables for a polynomial (in Mathematica)
Get mathematica to simplify expression with another equation
Look specifically at the answers by Daniel Lichtblau.
More questions on the topic here on Mathematica.SE:
Can I simplify an expression into form which uses my own definitions? (this question)
How do I replace a variable in a polynomial?
Replacing composite variables by a single variable
Replace expressions with symbols
Reduce an equation by putting a new variable
Find subexpression to minimize leafcount after replacment with temporary variable
Common subexpression from two expressions
Rewriting one expression using a variable representing another expression
Replacing a sum of expressions
In this simple example you can just use a rule. In more complex cases it might not be straighforward to generalize.
Simplify[a*b/(a + a*Cos[a/b]) /. a -> k b]
(* b/(1 + Cos[k]) *)