Cartesian product in Scheme

Here's a concise implementation that is also designed to minimize the size of the resulting structure in memory, by sharing the tails of the component lists. It uses SRFI-1.

(define (cartesian-product . lists)
  (fold-right (lambda (xs ys)
                (append-map (lambda (x)
                              (map (lambda (y)
                                     (cons x y))
                                   ys))
                            xs))
              '(())
              lists))

;compute the list of the (x,y) for y in l
(define (pairs x l)
  (define (aux accu x l)
    (if (null? l)
        accu
        (let ((y (car l))
              (tail (cdr l)))
          (aux (cons (cons x y) accu) x tail))))
  (aux '() x l))

(define (cartesian-product l m)   
  (define (aux accu l)
    (if (null? l) 
        accu
        (let ((x (car l)) 
              (tail (cdr l)))
          (aux (append (pairs x m) accu) tail))))
  (aux '() l))

Source: Scheme/Lisp nested loops and recursion


  ;returs a list wich looks like ((nr l[0]) (nr l[1])......)
  (define cart-1(λ(l nr)
      (if (null? l) 
             l 
             (append (list (list nr (car l))) (cart-1 (cdr l) nr)))))

;Cartesian product for 2 lists
(define cart-2(λ(l1 l2)
                (if(null? l2) 
             '() 
             (append (cart-1 l1 (car l2)) (cart-2 l1 (cdr l2))))))

 ;flattens a list containg sublists
(define flatten
(λ(from)
 (cond [(null? from) from]
      [(list? (car from)) (append (flatten (car from)) (flatten (cdr from)))]
      [else (cons (car from) (flatten (cdr from)))])}) 

;applys flatten to every element of l
(define flat
(λ(l)
(if(null? l)
l
(cons (flatten (car l)) (flat (cdr l))))))

;computes Cartesian product for a list of lists by applying cart-2
(define cart
(lambda (liste aux)
 (if (null? liste)
  aux
  (cart (cdr liste) (cart-2 (car liste) aux)))))


(define (cart-n l) (flat (cart (cdr l ) (car l))))