Closed form of $\sum_{n=-\infty}^\infty \frac{(-1)^n}{\sinh (z+n)}$?

Let $$g(z) = \sum_{n\in \mathbb{Z}} \frac{(-1)^n}{\sinh(z+n)}$$ $g$ has $2$ and $2\pi i$ as period, so an elliptic function. Poles of $g$, which are all simple, are exactly $0,1,\pi i,1+\pi i$ modulo periods, with residues $1,-1,-1,1$.

$\DeclareMathOperator{\sn}{sn}\DeclareMathOperator{\ns}{ns}$ Since $g$ has only simple poles, it is easier to express it as Jacobi elliptic function. Recall that $\ns(z,k)$ has periods $4K,2iK'$ and residues $1$ at $0$. Hence $g(z)$ must be of form $$g(z) =a \ns(az,k) - a \ns(a(z-\pi i),k) + C$$ then it is easy to determine $K'/K = 2\pi, a = 2K, C=0$. This puts $g(z)$ in terms of Jacobi-elliptic function: $$g(z) = 2K[\ns(2Kz, k) - k \sn(2Kz,k)] \qquad K' = 2\pi K$$


Mathematica code to calculate $g(z)$ numerically:

g[z_] := Module[{m = InverseEllipticNomeQ[Exp[-2 Pi^2]], K}, 
   K = EllipticK[m]; 
   2 K (JacobiNS[2 K*z, m] - Sqrt[m]*JacobiSN[2 K*z, m])];

This can give, within an eyeblink, value of any $g(z)$ to great precision. For example, try

N[g[1/3], 1000]

We can evaluate it in terms of Jacobi theta functions.

This identity is occasionally useful: $$ \sum _{n=-\infty }^{\infty }{\frac {b{u}^{n}}{1-a{q}^{2\,n}}}= \frac{b}{2i}\; {\frac { {\theta_1} \left( \frac{i}{2}\ln \left( au \right) ,q \right) { \theta_2} \left( 0,q \right) {\theta_3} \left( 0,q \right) {\theta_4} \left( 0,q \right) }{{\theta_1} \left( \frac{i}{2}\ln \left( u \right) ,q \right) {\theta_1} \left( \frac{i}{2}\ln \left( a \right) ,q \right) }} $$ provided $1 > |u| > |q^2|$ so that the series converges.

For this problem, write $\sinh$ in terms of $\exp$ to get the left side of this, with $$ a=e^{-2 z},\quad b=2e^{-z},\quad q=e^{-1},\quad u=-e^{-1} $$ to get the answer $$ \sum_{n=-\infty}^\infty \frac{(-1)^n}{\sinh (z+n)} = {\frac {i{{\rm e}^{-z}}{\theta_2} \left( iz+i/2,{{\rm e}^{-1}} \right) {\theta_2} \left( 0,{{\rm e}^{-1}} \right) { \theta_3} \left( 0,{{\rm e}^{-1}} \right) {\theta_4} \left( 0,{{\rm e}^{-1}} \right) }{{\theta_2} \left( i/2,{ {\rm e}^{-1}} \right) {\theta_1} \left( iz,{{\rm e}^{-1}} \right) }} $$ Note, despite all those $i$s in there, this is real when $z$ is real.