Combine column to remove NA's
A dplyr::coalesce
based solution could be as:
data %>% mutate(mycol = coalesce(x,y,z)) %>%
select(a, mycol)
# a mycol
# 1 A 1
# 2 B 2
# 3 C 3
# 4 D 4
# 5 E 5
Data
data <- data.frame('a' = c('A','B','C','D','E'),
'x' = c(1,2,NA,NA,NA),
'y' = c(NA,NA,3,NA,NA),
'z' = c(NA,NA,NA,4,5))
You can use unlist
to turn the columns into one vector. Afterwards, na.omit
can be used to remove the NA
s.
cbind(data[1], mycol = na.omit(unlist(data[-1])))
a mycol
x1 A 1
x2 B 2
y3 C 3
z4 D 4
z5 E 5
Here's a more general (but even simpler) solution which extends to all column types (factors, characters etc.) with non-ordered NA's. The strategy is simply to merge the non-NA values of other columns into your merged column using is.na
for indexing:
data$m = data$x # your new merged column start with x
data$m[!is.na(data$y)] = data$y[!is.na(data$y)] # merge with y
data$m[!is.na(data$z)] = data$z[!is.na(data$z)] # merge with z
> data
a x y z m
1 A 1 NA NA 1
2 B 2 NA NA 2
3 C NA 3 NA 3
4 D NA NA 4 4
5 E NA NA 5 5
Note that this will overwrite existing values in m
if there are several non-NA values in the same row. If you have a lot of columns you could automate this by looping over colnames(data)
.