Complex conjugate
Is this what you wanted?
expr = E^(-((I β)/2)) p (Cos[α/2] (Cos[θ]^2 + Sin[θ]^2 Sin[ϕ] (-I Cos[ϕ] + Sin[ϕ])) +
E^(I β) Sin[α/2] (Cos[θ]^2 + Sin[θ]^2 Sin[ϕ] (I Cos[ϕ] + Sin[ϕ])))
expr /. Complex[x_, y_] :> Complex[x, -y]
You might use:
FullSimplify@ComplexExpand@Conjugate[(* expression *)]
in your case, it returns:
$$ e^{\frac{i \beta }{2}} p \left(\sin \left(\frac{\alpha }{2}\right) e^{-i (\beta -\phi )} \left(\cos ^2(\theta ) \cos (\phi )-i \sin (\phi )\right)+\cos \left(\frac{\alpha }{2}\right) \left(\cos ^2(\theta )+\sin ^2(\theta ) \sin (\phi ) (\sin (\phi )+i \cos (\phi ))\right)\right) $$
You can also do
Refine[Conjugate@c[[1]],
Assumptions->(\[Alpha] | \[Beta] | \[Phi]) \[Element] Reals]
This also works in cases when you have additional manifestly complex variables in your expression (ComplexExpand
assumes that all variables are real). Of course in that case you would not add those in your Assumptions. For example:
Refine[Conjugate[a b], Assumptions -> a \[Element] Reals]
(*
==> a Conjugate[b]
*)