connected manifolds are path connected

Let $x\in X$. Consider $U:=\{y\in X\mathop{|}\text{there is a path from $x$ to $y$}\}$. So $U$ is nonempty: $x\in U$. Claim: $U$ and $U^c:=X\smallsetminus U$ both are open. To prove this use the fact that given any point $z\in X$ there is a neighbourhood of $z$ which is homeomorphic to an open ball of $\mathbb{R}^n$ for some $n$. The homeomorphic image of a path connected set is path connected, so $U$ and $U^c$ both are open but $U \cup U^c = X$ which implies that $U=X$ since $U$ is nonempty.


path connected sets are also connected, conversely is not always true (there is a famous counterexample which shows this fact). However a necessary condition To make the converse of the previous statement possible is that the connected sets are required to be locally Euclidean. So a topological manifold, by definition is also a locally Euclidean space, if you can prove the previous statement you can get the answer. Hope it helps