Convergence/Divergence of some series
I thought it might be instructive to present an approach that relies on the elementary inequality
$$\log(1+x)\le x \tag1$$
and straightforward arithmetic. To that end, we now proceed.
From $(1)$ we have
$$\begin{align} \frac{1}{n\log(n)}&\ge \frac{\log\left(1+\frac1n\right)}{\log(n)}\\\\ &\ge \log\left(1+\frac{\log\left(1+\frac1n\right)}{\log(n)}\right)\\\\ &=\log\left(\frac{\log(n+1)}{\log(n)}\right)\tag 2 \end{align}$$
We can now exploit a telescoping series by using $(2)$ to write
$$\begin{align} \sum_{n=2}^N \frac{1}{n\log(n)}&\ge \sum_{n=2}^N \log\left(\frac{\log(n+1)}{\log(n)}\right)\\\\ &=\sum_{n=2}^N \left(\log(\log(n+1))-\log(\log(n)) \right)\\\\ &=\log(\log(N+1))-\log(\log(2))\tag 3 \end{align}$$
Finally, letting $N\to \infty$ in $(3)$ yields the coveted result
$$\lim_{N\to \infty}\sum_{n=2}^N \frac{1}{n\log(n)}=\infty$$
and the series of interest diverges.
Your comparison goes in the wrong direction: You need $\dfrac 1 {n\log n} \ge \text{something.}$
Alternatively, you can use an integral test: $$ \int_2^\infty \frac{dx}{x\log x} = \int_2^\infty \left(\frac 1 {\log x} \right) \left( \frac{dx} x\right) = \int_{\log 2}^\infty \frac 1 u\, du = +\infty. $$
Integral test
$$ \int_{2}^{\infty}\frac{1}{x\log(x)}\mathbb{d}x $$
$$ u=\log(x) $$
$$ \mathbb{d}u=\frac{1}{x}\mathbb{d}x $$
$$ \int_{\log(2)}^{\infty}\frac{1}{u}\mathbb{d}u=\lim_{a\to\infty}\left[\log|a|-\log|\log(2)|\right]=\infty $$
So the sum must diverge as well.