Convert float64 column to int64 in Pandas
consider using
df['column name'].astype('Int64')
nan
will be changed to NaN
You can need to pass in the string 'int64'
:
>>> import pandas as pd
>>> df = pd.DataFrame({'a': [1.0, 2.0]}) # some test dataframe
>>> df['a'].astype('int64')
0 1
1 2
Name: a, dtype: int64
There are some alternative ways to specify 64-bit integers:
>>> df['a'].astype('i8') # integer with 8 bytes (64 bit)
0 1
1 2
Name: a, dtype: int64
>>> import numpy as np
>>> df['a'].astype(np.int64) # native numpy 64 bit integer
0 1
1 2
Name: a, dtype: int64
Or use np.int64
directly on your column (but it returns a numpy.array
):
>>> np.int64(df['a'])
array([1, 2], dtype=int64)
This seems to be a little buggy in Pandas 0.23.4?
If there are np.nan values then this will throw an error as expected:
df['col'] = df['col'].astype(np.int64)
But doesn't change any values from float to int as I would expect if "ignore" is used:
df['col'] = df['col'].astype(np.int64,errors='ignore')
It worked if I first converted np.nan:
df['col'] = df['col'].fillna(0).astype(np.int64)
df['col'] = df['col'].astype(np.int64)
Now I can't figure out how to get null values back in place of the zeroes since this will convert everything back to float again:
df['col'] = df['col'].replace(0,np.nan)
Solution for pandas 0.24+ for converting numeric with missing values:
df = pd.DataFrame({'column name':[7500000.0,7500000.0, np.nan]})
print (df['column name'])
0 7500000.0
1 7500000.0
2 NaN
Name: column name, dtype: float64
df['column name'] = df['column name'].astype(np.int64)
ValueError: Cannot convert non-finite values (NA or inf) to integer
#http://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html
df['column name'] = df['column name'].astype('Int64')
print (df['column name'])
0 7500000
1 7500000
2 NaN
Name: column name, dtype: Int64
I think you need cast to numpy.int64
:
df['column name'].astype(np.int64)
Sample:
df = pd.DataFrame({'column name':[7500000.0,7500000.0]})
print (df['column name'])
0 7500000.0
1 7500000.0
Name: column name, dtype: float64
df['column name'] = df['column name'].astype(np.int64)
#same as
#df['column name'] = df['column name'].astype(pd.np.int64)
print (df['column name'])
0 7500000
1 7500000
Name: column name, dtype: int64
If some NaN
s in columns need replace them to some int
(e.g. 0
) by fillna
, because type
of NaN
is float
:
df = pd.DataFrame({'column name':[7500000.0,np.nan]})
df['column name'] = df['column name'].fillna(0).astype(np.int64)
print (df['column name'])
0 7500000
1 0
Name: column name, dtype: int64
Also check documentation - missing data casting rules
EDIT:
Convert values with NaN
s is buggy:
df = pd.DataFrame({'column name':[7500000.0,np.nan]})
df['column name'] = df['column name'].values.astype(np.int64)
print (df['column name'])
0 7500000
1 -9223372036854775808
Name: column name, dtype: int64