Convert Pandas Series to DateTime in a DataFrame
df=pd.read_csv("filename.csv" , parse_dates=["<column name>"])
type(df.<column name>)
example: if you want to convert day which is initially a string to a Timestamp in Pandas
df=pd.read_csv("weather_data2.csv" , parse_dates=["day"])
type(df.day)
The output will be pandas.tslib.Timestamp
You can't: DataFrame
columns are Series
, by definition. That said, if you make the dtype
(the type of all the elements) datetime-like, then you can access the quantities you want via the .dt
accessor (docs):
>>> df["TimeReviewed"] = pd.to_datetime(df["TimeReviewed"])
>>> df["TimeReviewed"]
205 76032930 2015-01-24 00:05:27.513000
232 76032930 2015-01-24 00:06:46.703000
233 76032930 2015-01-24 00:06:56.707000
413 76032930 2015-01-24 00:14:24.957000
565 76032930 2015-01-24 00:23:07.220000
Name: TimeReviewed, dtype: datetime64[ns]
>>> df["TimeReviewed"].dt
<pandas.tseries.common.DatetimeProperties object at 0xb10da60c>
>>> df["TimeReviewed"].dt.year
205 76032930 2015
232 76032930 2015
233 76032930 2015
413 76032930 2015
565 76032930 2015
dtype: int64
>>> df["TimeReviewed"].dt.month
205 76032930 1
232 76032930 1
233 76032930 1
413 76032930 1
565 76032930 1
dtype: int64
>>> df["TimeReviewed"].dt.minute
205 76032930 5
232 76032930 6
233 76032930 6
413 76032930 14
565 76032930 23
dtype: int64
If you're stuck using an older version of pandas
, you can always access the various elements manually (again, after converting it to a datetime-dtyped Series). It'll be slower, but sometimes that isn't an issue:
>>> df["TimeReviewed"].apply(lambda x: x.year)
205 76032930 2015
232 76032930 2015
233 76032930 2015
413 76032930 2015
565 76032930 2015
Name: TimeReviewed, dtype: int64
Some handy script:
hour = df['assess_time'].dt.hour.values[0]