Coordinates of intersections in axis environment (pgfplots)

As wh1t3 said in the comment, you can extract the coordinate using \pgfgetlastxy{<macro for x>}{<macro for y>}. In order to transform this into axis units, you have to apply the inverse of the coordinate transformation that PGFplots uses. In the example below, I've wrapped the transformation in a macro \transformxdimension, which takes a length in pt and sets \pgfmathresult to contain the length in axis units:

\documentclass{minimal} 
\usepackage{pgfplots}
\usetikzlibrary{intersections}

\begin{document} 

\makeatletter
\newcommand\transformxdimension[1]{
    \pgfmathparse{((#1/\pgfplots@x@veclength)+\pgfplots@data@scale@trafo@SHIFT@x)/10^\pgfplots@data@scale@trafo@EXPONENT@x}
}
\newcommand\transformydimension[1]{
    \pgfmathparse{((#1/\pgfplots@y@veclength)+\pgfplots@data@scale@trafo@SHIFT@y)/10^\pgfplots@data@scale@trafo@EXPONENT@y}
}
\makeatother

\begin{tikzpicture} 
\begin{axis}[yticklabel style={/pgf/number format/.cd, fixed, fixed zerofill}]
\addplot[name path global=GaussCurve] gnuplot[domain=48.00:56.00,samples=100] {exp(-0.5*((x-52.64)/1.82)**2)/(sqrt(2*pi)*1.82)};
\path[name path global=HelperLine] (axis cs:48,0.13288) -- (axis cs:56,0.13288);

\draw[dashed,name intersections={of=GaussCurve and HelperLine}] (axis cs:48,0.13288) -- (intersection-2)
    node [anchor=south, fill=white, fill opacity=0.75,text opacity=1]{
        \pgfgetlastxy{\macrox}{\macroy}
        \transformxdimension{\macrox}
        \pgfmathprintnumber{\pgfmathresult},%
        \transformydimension{\macroy}%
        \pgfmathprintnumber{\pgfmathresult} 
    }
;   
\fill[red] (intersection-2) circle (.1cm);
\end{axis} 
\end{tikzpicture} 
\end{document}

I try the idea of whlt3 but it's was not easy; see the next code (perhaps I do some wrong things because I don't know very well pgfplots). I try also \pgfextractx. I need in each case to use \pgfextra to get the x component.

Update with the excellent answer of Jake :

  \documentclass{minimal} 
  \usepackage{tikz,pgfplots}
  \usetikzlibrary{intersections}

  \makeatletter
  \newcommand\transformxdimension[1]{
      \pgfmathparse{((#1/\pgfplots@x@veclength)+\pgfplots@data@scale@trafo@SHIFT@x)/%
       10^\pgfplots@data@scale@trafo@EXPONENT@x}
  }
  \newcommand\transformydimension[1]{
    \pgfmathparse{((#1/\pgfplots@y@veclength)+\pgfplots@data@scale@trafo@SHIFT@y)/%
       10^\pgfplots@data@scale@trafo@EXPONENT@y}
   }
 \makeatother

\begin{document} 

\begin{tikzpicture} 
\begin{axis}
\addplot[name path global=GaussCurve] gnuplot[domain=48.00:56.00,samples=100] {%
       exp(-0.5*((x-52.64)/1.82)**2)/(sqrt(2*pi)*1.82)};
\path[name path global=HelperLine] (axis cs:48,0.13288) -- (axis cs:56,0.13288);
\draw[dashed,name intersections={of=GaussCurve and HelperLine,name=i}] (axis %
      cs:48,0.13288) -- (i-2)%
\pgfextra{\pgfgetlastxy{\macrox}{\macroy}%
         \global\let\macrox\macrox};
\fill[red] (i-2)  circle (.1cm);
\draw[dashed] (i-2)--(\macrox,0) node {%
         \transformxdimension{\macrox}
        \pgfmathprintnumber{\pgfmathresult}}; 
\end{axis}

\end{tikzpicture} 


\end{document}

enter image description here


With the release of PGFPlots v1.16 it is now possible to store (axis) coordinates with \pgfplotspointgetcoordinates in data point, which then can be called by \pgfkeysvalueof.

For details please have a look at the comments in the code.

% used PGFPlots v1.16
\documentclass[border=5pt]{standalone}
\usepackage{pgfplots}
    \usetikzlibrary{intersections}
    \pgfplotsset{
        % use this `compat' level or higher, so TikZ coordinates don't have to
        % be prefixed by `axis cs:'
        compat=1.11,
    }
\begin{document}
\begin{tikzpicture}
    \begin{axis}[
        yticklabel style={
            /pgf/number format/fixed,
        },
    ]
        \addplot [name path global=GaussCurve]
            gnuplot [domain=48.00:56.00,samples=100]
                {exp(-0.5*((x-52.64)/1.82)**2)/(sqrt(2*pi)*1.82)};
        \path [name path global=HelperLine]
            (48,0.13288) -- (56,0.13288)
                coordinate [at start]   (start)
        ;
        \draw [dashed,name intersections={of=GaussCurve and HelperLine}]
            (start) -- (intersection-2) -- (intersection-2 |- 0,0)
                % -------------------------------------------------------------
                % using `\pgfplotspointgetcoordinates' stores the (axis)
                % coordinates of e.g. the coordinate (intersection-2) in
                % `data point', which then can be called by `\pgfkeysvalueof'
                node [at start,below left] {
                    \pgfplotspointgetcoordinates{(intersection-2)}
                    $(
                        \pgfmathprintnumber[fixed]{\pgfkeysvalueof{/data point/x}},
                        \pgfmathprintnumber[fixed]{\pgfkeysvalueof{/data point/y}}
                    )$
                }
                % -------------------------------------------------------------
        ;
        \fill [red] (intersection-2) circle (1mm);
    \end{axis}
\end{tikzpicture}
\end{document}

image showing the result of above code