Counting the Frequency of words in a pandas data frame

You need str.cat with lower first for concanecate all values to one string, then need word_tokenize and last use your solution:

top_N = 4
#if not necessary all lower
a = data['Firm_Name'].str.lower().str.cat(sep=' ')
words = nltk.tokenize.word_tokenize(a)
word_dist = nltk.FreqDist(words)
print (word_dist)
<FreqDist with 17 samples and 20 outcomes>

rslt = pd.DataFrame(word_dist.most_common(top_N),
                    columns=['Word', 'Frequency'])
print(rslt)
      Word  Frequency
0  society          3
1      ltd          2
2      the          1
3       co          1

Also is possible remove lower if necessary:

top_N = 4
a = data['Firm_Name'].str.cat(sep=' ')
words = nltk.tokenize.word_tokenize(a)
word_dist = nltk.FreqDist(words)
rslt = pd.DataFrame(word_dist.most_common(top_N),
                    columns=['Word', 'Frequency'])
print(rslt)
         Word  Frequency
0     Society          3
1         Ltd          2
2         MMV          1
3  Kensington          1

IIUIC, use value_counts()

In [3361]: df.Firm_Name.str.split(expand=True).stack().value_counts()
Out[3361]:
Society       3
Ltd           2
James's       1
R.X.          1
Yah           1
Associates    1
St            1
Kensington    1
MMV           1
Big           1
&             1
The           1
Co            1
Oil           1
Building      1
dtype: int64

Or,

pd.Series(np.concatenate([x.split() for x in df.Firm_Name])).value_counts()

Or,

pd.Series(' '.join(df.Firm_Name).split()).value_counts()

For top N, for example 3

In [3379]: pd.Series(' '.join(df.Firm_Name).split()).value_counts()[:3]
Out[3379]:
Society    3
Ltd        2
James's    1
dtype: int64

Details

In [3380]: df
Out[3380]:
      URN                   Firm_Name
0  104472               R.X. Yah & Co
1  104873        Big Building Society
2  109986          St James's Society
3  114058  The Kensington Society Ltd
4  113438      MMV Oil Associates Ltd