Create Column with ELIF in Pandas

I tried the following and the result was much faster. Hope it's helpful for others.

df['combo'] = 'other'
df.loc[df['mobile'] == 'mobile', 'combo'] = 'mobile'
df.loc[df['tablet'] == 'tablet', 'combo'] = 'tablet'

ELIF logic can be implemented with np.select or nested np.where:

import numpy as np

df['combo'] = np.select([df.mobile == 'mobile', df.tablet == 'tablet'], 
                        ['mobile', 'tablet'], 
                        default='other')
# or 
df['combo'] = np.where(df.mobile == 'mobile', 'mobile', 
                       np.where(df.tablet == 'tablet', 'tablet', 'other'))

Sample Data + Output:

   mobile  tablet   combo
0  mobile     bar  mobile
1     foo  tablet  tablet
2     foo     nan   other
3  mobile  tablet  mobile
4  mobile     nan  mobile
5     foo  tablet  tablet
6  mobile     bar  mobile
7  mobile  tablet  mobile
8  mobile     bar  mobile
9  mobile     nan  mobile

In cases where you have multiple branching statements it's best to create a function that accepts a row and then apply it along the axis=1. This is usually much faster then iteration through rows.

def func(row):
    if row['mobile'] == 'mobile':
        return 'mobile'
    elif row['tablet'] =='tablet':
        return 'tablet' 
    else:
        return 'other'

df['combo'] = df.apply(func, axis=1)

Tags:

Python

Pandas