CryptoJS AES encryption and Java AES decryption

When encrypting on one system and decrypting on another you are at the mercy of system defaults. If any system defaults do not match (and they often don't) then your decryption will fail.

Everything has to be byte for byte the same on both sides. Effectively that means specifying everything on both sides rather than relying on defaults. You can only use defaults if you are using the same system at both ends. Even then, it is better to specify exactly.

Key, IV, encryption mode, padding and string to bytes conversion all need to be the same at both ends. It is especially worth checking that the key bytes are the same. If you are using a Key Derivation Function (KDF) to generate your key, then all the parameters for that need to be the same, and hence specified exactly.

Your "Invalid AES key length" may well indicate a problem with generating your key. You use getBytes(). That is probably an error. You need to specify what sort of bytes you are getting: ANSI, UTF-8, EBCDIC, whatever. The default assumption for the string to byte conversion is the likely cause of this problem. Specify the conversion to be used explicitly at both ends. That way you can be sure that they match.

Crypto is designed to fail if the parameters do not match exactly for encryption and decryption. For example, even a one bit difference in the key will cause it to fail.


Disclaimer: Do not use encryption unless you understand encryption concepts including chaining mode, key derivation functions, IV and block size. And don't roll your own security scheme but stick to an established one. Just throwing in encryption algorithms doesn't mean an application has become any more secure.

CryptoJS implements the same key derivation function as OpenSSL and the same format to put the IV into the encrypted data. So all Java code that deals with OpenSSL encoded data applies.

Given the following Javascript code:

var text = "The quick brown fox jumps over the lazy dog. 👻 👻";
var secret = "René Über";
var encrypted = CryptoJS.AES.encrypt(text, secret);
encrypted = encrypted.toString();
console.log("Cipher text: " + encrypted);

We get the cipher text:

U2FsdGVkX1+tsmZvCEFa/iGeSA0K7gvgs9KXeZKwbCDNCs2zPo+BXjvKYLrJutMK+hxTwl/hyaQLOaD7LLIRo2I5fyeRMPnroo6k8N9uwKk=

On the Java side, we have

String secret = "René Über";
String cipherText = "U2FsdGVkX1+tsmZvCEFa/iGeSA0K7gvgs9KXeZKwbCDNCs2zPo+BXjvKYLrJutMK+hxTwl/hyaQLOaD7LLIRo2I5fyeRMPnroo6k8N9uwKk=";

byte[] cipherData = Base64.getDecoder().decode(cipherText);
byte[] saltData = Arrays.copyOfRange(cipherData, 8, 16);

MessageDigest md5 = MessageDigest.getInstance("MD5");
final byte[][] keyAndIV = GenerateKeyAndIV(32, 16, 1, saltData, secret.getBytes(StandardCharsets.UTF_8), md5);
SecretKeySpec key = new SecretKeySpec(keyAndIV[0], "AES");
IvParameterSpec iv = new IvParameterSpec(keyAndIV[1]);

byte[] encrypted = Arrays.copyOfRange(cipherData, 16, cipherData.length);
Cipher aesCBC = Cipher.getInstance("AES/CBC/PKCS5Padding");
aesCBC.init(Cipher.DECRYPT_MODE, key, iv);
byte[] decryptedData = aesCBC.doFinal(encrypted);
String decryptedText = new String(decryptedData, StandardCharsets.UTF_8);

System.out.println(decryptedText);

The result is:

The quick brown fox jumps over the lazy dog. 👻 👻

That's the text we started with. And emojis, accents and umlauts work as well.

GenerateKeyAndIV is a helper function that reimplements OpenSSL's key derivation function EVP_BytesToKey (see https://github.com/openssl/openssl/blob/master/crypto/evp/evp_key.c).

/**
 * Generates a key and an initialization vector (IV) with the given salt and password.
 * <p>
 * This method is equivalent to OpenSSL's EVP_BytesToKey function
 * (see https://github.com/openssl/openssl/blob/master/crypto/evp/evp_key.c).
 * By default, OpenSSL uses a single iteration, MD5 as the algorithm and UTF-8 encoded password data.
 * </p>
 * @param keyLength the length of the generated key (in bytes)
 * @param ivLength the length of the generated IV (in bytes)
 * @param iterations the number of digestion rounds 
 * @param salt the salt data (8 bytes of data or <code>null</code>)
 * @param password the password data (optional)
 * @param md the message digest algorithm to use
 * @return an two-element array with the generated key and IV
 */
public static byte[][] GenerateKeyAndIV(int keyLength, int ivLength, int iterations, byte[] salt, byte[] password, MessageDigest md) {

    int digestLength = md.getDigestLength();
    int requiredLength = (keyLength + ivLength + digestLength - 1) / digestLength * digestLength;
    byte[] generatedData = new byte[requiredLength];
    int generatedLength = 0;

    try {
        md.reset();

        // Repeat process until sufficient data has been generated
        while (generatedLength < keyLength + ivLength) {

            // Digest data (last digest if available, password data, salt if available)
            if (generatedLength > 0)
                md.update(generatedData, generatedLength - digestLength, digestLength);
            md.update(password);
            if (salt != null)
                md.update(salt, 0, 8);
            md.digest(generatedData, generatedLength, digestLength);

            // additional rounds
            for (int i = 1; i < iterations; i++) {
                md.update(generatedData, generatedLength, digestLength);
                md.digest(generatedData, generatedLength, digestLength);
            }

            generatedLength += digestLength;
        }

        // Copy key and IV into separate byte arrays
        byte[][] result = new byte[2][];
        result[0] = Arrays.copyOfRange(generatedData, 0, keyLength);
        if (ivLength > 0)
            result[1] = Arrays.copyOfRange(generatedData, keyLength, keyLength + ivLength);

        return result;

    } catch (DigestException e) {
        throw new RuntimeException(e);

    } finally {
        // Clean out temporary data
        Arrays.fill(generatedData, (byte)0);
    }
}

Note that you have to install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy. Otherwise, AES with key size of 256 won't work and throw an exception:

java.security.InvalidKeyException: Illegal key size

Update

I have replaced Ola Bini's Java code of EVP_BytesToKey, which I used in the first version of my answer, with a more idiomatic and easier to understand Java code (see above).

Also see How to decrypt file in Java encrypted with openssl command using AES?.