difference between linear, semilinear and quasiliner PDE's
I think this will help you to understand the PDE $:$
Linear PDE: $a(x,y)u_x+b(x,y)u_y+c(x,y)u=f(x,y)$
Semi-linear PDE: $a(x,y)u_x+b(x,y)u_y=f(x,y,u)$
Quasi-linear PDE: $a(x,y,u)u_x+b(x,y,u)u_y=f(x,y,u)$
I hope these examples will help you.
Semilinear/Almost Linear PDE:
1) $a(x,y)u_x+b(x,y)u_y+c(x,y,u)=0$
2) $U_{tt}-U_{xx}+U^3=0$
Qausi Linear PDE:
1) $a(x,y,u)u_x+b(x,y,u)u_y-c(x,y,u)=0$
2) $U_x+UV_y=0$
3) $U_{tt}-UU_{xx}+U^3=0$
4) $U_{tt}-UU_{xx}+U=0$
5) Navier Stokes equation is also Qausi Linear Equation