Diophantine equation $ax + by = c$ has an integer solution $x_0, y_0$ if and only if $\gcd(a,b)|c$
If $(a,b)\mid c$, $\exists t\in \mathbb{Z}$ such that $t(a,b)=c$. As we know that there exists $x,y \in \mathbb{Z}$ such that $ax+by=(a,b)$, then choose the integers $x_0=tx$ and $y_0=ty$.
To prove the converse, if $x_0$ and $y_0$ be integers, then $(a,b)\mid x_0a$ and $(a,b)\mid y_0y$ implies $(a,b)\mid (x_0a+y_0b)$.