Do these equations create a helix wrapped into a torus?
Here's the parametrization for a helix of $n$ winds wrapped around a torus of major radius $R$ and minor radius $r$: $$\begin{align*} x&=(R+r\cos(nt))\cos(t)\\ y&=(R+r\cos(nt))\sin(t)\\ z&=r\sin(nt) \end{align*}$$
Making this into a function in Mathematica,
HelixPlot[R_, r_, n_] := Show[ParametricPlot3D[{(R + r Cos[t]) Cos[u], (R + r Cos[t]) Sin[u], r Sin[t]}, {t, 0, 2 Pi}, {u, 0, 2 Pi}, PlotPoints -> 30, Mesh -> None, PlotStyle -> Opacity[0.3]], ParametricPlot3D[{(R + r Cos[n*t]) Cos[t], (R + r Cos[n*t]) Sin[t], r Sin[n*t]}, {t, 0, 2 Pi}, PlotPoints -> 30, PlotStyle -> {Thick, Black}]]
we can toy with different settings.
HelixPlot[6, 2, 5]
produces
HelixPlot[6, 1, 10]
produces
HelixPlot[6, 5, 20]
produces
You need two radii to decribe a torus. Let's call them $a$ and $b$. Then the parametric equations of the torus are: $$x = (a + b\cos u)\cos v$$ $$y = (a + b\cos u)\sin v$$ $$z = b\sin u$$
Then, to get a helical curve, set $v = ku$, where $k << 1$.
Here's the result with $a=3$, $b=1$, $k=0.05$: