Does bias in the convolutional layer really make a difference to the test accuracy?
Biases are tuned alongside weights by learning algorithms such as gradient descent. biases differ from weights is that they are independent of the output from previous layers. Conceptually bias is caused by input from a neuron with a fixed activation of 1, and so is updated by subtracting the just the product of the delta value and learning rate.
In a large model, removing the bias inputs makes very little difference because each node can make a bias node out of the average activation of all of its inputs, which by the law of large numbers will be roughly normal. At the first layer, the ability for this to happens depends on your input distribution. For MNIST for example, the input's average activation is roughly constant. On a small network, of course you need a bias input, but on a large network, removing it makes almost no difference.
Although in a large network it has no difference, it still depends on network architecture. For instance in LSTM:
Most applications of LSTMs simply initialize the LSTMs with small random weights which works well on many problems. But this initialization effectively sets the forget gate to 0.5. This introduces a vanishing gradient with a factor of 0.5 per timestep, which can cause problems whenever the long term dependencies are particularly severe. This problem is addressed by simply initializing the forget gates bias to a large value such as 1 or 2. By doing so, the forget gate will be initialized to a value that is close to 1, enabling gradient flow.
See also:
- The rule of bias in Neural network
- What is bias in Neural network
- An Empirical Exploration of Recurrent Network Architectures