Does the Planck scale imply that spacetime is discrete?

The answer to all questions is No. In fact, even the right reaction to the first sentence - that the Planck scale is a "discrete measure" - is No.

The Planck length is a particular value of distance which is as important as $2\pi$ times the distance or any other multiple. The fact that we can speak about the Planck scale doesn't mean that the distance becomes discrete in any way. We may also talk about the radius of the Earth which doesn't mean that all distances have to be its multiples.

In quantum gravity, geometry with the usual rules doesn't work if the (proper) distances are thought of as being shorter than the Planck scale. But this invalidity of classical geometry doesn't mean that anything about the geometry has to become discrete (although it's a favorite meme promoted by popular books). There are lots of other effects that make the sharp, point-based geometry we know invalid - and indeed, we know that in the real world, the geometry collapses near the Planck scale because of other reasons than discreteness.

Quantum mechanics got its name because according to its rules, some quantities such as energy of bound states or the angular momentum can only take "quantized" or discrete values (eigenvalues). But despite the name, that doesn't mean that all observables in quantum mechanics have to possess a discrete spectrum. Do positions or distances possess a discrete spectrum?

The proposition that distances or durations become discrete near the Planck scale is a scientific hypothesis and it is one that may be - and, in fact, has been - experimentally falsified. For example, these discrete theories inevitably predict that the time needed for photons to get from very distant places of the Universe to the Earth will measurably depend on the photons' energy.

The Fermi satellite has showed that the delay is zero within dozens of milliseconds

http://motls.blogspot.com/2009/08/fermi-kills-all-lorentz-violating.html

which proves that the violations of the Lorentz symmetry (special relativity) of the magnitude that one would inevitably get from the violations of the continuity of spacetime have to be much smaller than what a generic discrete theory predicts.

In fact, the argument used by the Fermi satellite only employs the most straightforward way to impose upper bounds on the Lorentz violation. Using the so-called birefringence,

http://arxiv.org/abs/1102.2784

one may improve the bounds by 14 orders of magnitude! This safely kills any imaginable theory that violates the Lorentz symmetry - or even continuity of the spacetime - at the Planck scale. In some sense, the birefringence method applied to gamma ray bursts allows one to "see" the continuity of spacetime at distances that are 14 orders of magnitude shorter than the Planck length.

It doesn't mean that all physics at those "distances" works just like in large flat space. It doesn't. But it surely does mean that some physics - such as the existence of photons with arbitrarily short wavelengths - has to work just like it does at long distances. And it safely rules out all hypotheses that the spacetime may be built out of discrete, LEGO-like or any qualitatively similar building blocks.


Minimal Length Scale Scenarios for Quantum Gravity
arXiv:1203.6191
Here is a serious consideration (review paper) considering many possibilities of something similar to a discrete quantum length scale. Enjoy!
http://arxiv.org/abs/1203.6191