Show[RegionPlot3D[1 <= x^2 + y^2 + z^2 <= 3 && (y >= x Sin[Pi/2] || y < -x Sin[Pi/2]),
{x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh -> None, PlotPoints -> 100],
Graphics3D[{Red, Sphere[{0, 0, 0}, 1]}]]
SetOptions[{SphericalPlot3D, ParametricPlot3D}, Mesh -> None];
fun = {r {0, -Sin[t], Cos[t]}, r {Sin[t], 0, Cos[t]}};
p1 = SphericalPlot3D[{2, 2.5}, {u, 0, Pi}, {v, 0, 1.5 Pi},
PlotStyle ->
Directive[Green, Opacity[0.7], Specularity[White, 20]]];
p2 = ParametricPlot3D[fun, {r, 2, 2.5}, {t, 0, Pi},
PlotStyle ->
Directive[Green, Opacity[0.7], Specularity[White, 20]]];
p3 = SphericalPlot3D[{1.5, 1.99}, {u, 0, Pi}, {v, 0, 1.5 Pi},
PlotStyle -> Directive[Red, Opacity[0.7], Specularity[White, 20]]];
p4 = ParametricPlot3D[fun, {r, 1.5, 1.99}, {t, 0, Pi},
PlotStyle -> Directive[Red, Opacity[0.7], Specularity[White, 20]]];
p5 = SphericalPlot3D[{1, 1.48}, {u, 0, Pi}, {v, 0, 2 Pi},
PlotStyle -> Directive[Blue, Opacity[0.7], Specularity[White, 20]]];
Show[p1, p2, p3, p4, p5, PlotRange -> All, Axes -> False,
Boxed -> False]
Show[p1, p2, p3, p4, p5, PlotRange -> All, ViewPoint -> Front]
Grid[{{
Show[p3, p4, p5, ClipPlanes -> {{-1, 1, 0, 1}},
Axes -> False, Boxed -> False, ImageSize -> 400],
Show[p3, p4, p5, ClipPlanes -> {{0, 0, -1, 0}},
Axes -> False, Boxed -> False, ImageSize -> 400]}}]
p = N@Table[ { Cos[x], 0, Sin[x]}, {x, Pi/2, -Pi/2, -Pi/200}];
Show[
{
SphericalPlot3D[ 1 , {t, 0, Pi}, {phi, 0, 3 Pi/2}, Axes -> False, Mesh -> False],
Graphics3D@{{Red, Sphere[{0, 0, 0}, 1/2]},
Polygon[ p],
Polygon@(RotationTransform[-Pi/2, {0, 0, 1}]@p)
}} , Boxed -> False ]