Evaluating the $ \lim_{n \to \infty} \prod_{1\leq k \leq n} (1+\frac{k}{n})^{1/k}$
Hint, based on Surb:
$$
\log L = \lim_{n\to\infty} \sum_{k=1}^n\frac{1}{k}\log\left(1+\frac{k}{n}\right)
=\frac{1}{n}\sum_{k=1}^n\frac{n}{k}\log\left(1+\frac{k}{n}\right)
=\int_0^1\frac{\log(1+x)}{x}\;dx
$$
by a Riemann sum argument.