Extend contigency table with proportions (percentages)
If it's conciseness you're after, you might like:
prop.table(table(tips$smoker))
and then scale by 100 and round if you like. Or more like your exact output:
tbl <- table(tips$smoker)
cbind(tbl,prop.table(tbl))
If you wanted to do this for multiple columns, there are lots of different directions you could go depending on what your tastes tell you is clean looking output, but here's one option:
tblFun <- function(x){
tbl <- table(x)
res <- cbind(tbl,round(prop.table(tbl)*100,2))
colnames(res) <- c('Count','Percentage')
res
}
do.call(rbind,lapply(tips[3:6],tblFun))
Count Percentage
Female 87 35.66
Male 157 64.34
No 151 61.89
Yes 93 38.11
Fri 19 7.79
Sat 87 35.66
Sun 76 31.15
Thur 62 25.41
Dinner 176 72.13
Lunch 68 27.87
If you don't like stack the different tables on top of each other, you can ditch the do.call
and leave them in a list.
I am not 100% certain, but I think this does what you want using prop.table. See mostly the last 3 lines. The rest of the code is just creating fake data.
set.seed(1234)
total_bill <- rnorm(50, 25, 3)
tip <- 0.15 * total_bill + rnorm(50, 0, 1)
sex <- rbinom(50, 1, 0.5)
smoker <- rbinom(50, 1, 0.3)
day <- ceiling(runif(50, 0,7))
time <- ceiling(runif(50, 0,3))
size <- 1 + rpois(50, 2)
my.data <- as.data.frame(cbind(total_bill, tip, sex, smoker, day, time, size))
my.data
my.table <- table(my.data$smoker)
my.prop <- prop.table(my.table)
cbind(my.table, my.prop)
Your code doesn't seem so ugly to me...
however, an alternative (not much better) could be e.g. :
df <- data.frame(table(yn))
colnames(df) <- c('Smoker','Freq')
df$Perc <- df$Freq / sum(df$Freq) * 100
------------------
Smoker Freq Perc
1 No 19 47.5
2 Yes 21 52.5
Here's a tidyverse version:
library(tidyverse)
data(diamonds)
(as.data.frame(table(diamonds$cut)) %>% rename(Count=1,Freq=2) %>% mutate(Perc=100*Freq/sum(Freq)))
Or if you want a handy function:
getPercentages <- function(df, colName) {
df.cnt <- df %>% select({{colName}}) %>%
table() %>%
as.data.frame() %>%
rename({{colName}} :=1, Freq=2) %>%
mutate(Perc=100*Freq/sum(Freq))
}
Now you can do:
diamonds %>% getPercentages(cut)
or this:
df=diamonds %>% group_by(cut) %>% group_modify(~.x %>% getPercentages(clarity))
ggplot(df,aes(x=clarity,y=Perc))+geom_col()+facet_wrap(~cut)