Factoring a quadratic polynomial (absolute beginner level), are both answers correct?
.Yes, you are correct. Since $(x+5)(x-2) = (x-2)(x+5) = x^2 + 3x-10$, we note that $a$ and $b$ may either take the values $(5,-2)$ or $(-2,5)$.
I would consider providing just one of the two solutions to be insufficient, since the question itself ask for the values of $a$ and $b$, but nowhere mentions that they are unique. However, any question saying "find the values of $a$ and $b$" is wrong with the word "the" : they are assuming uniqueness of $a$ and $b$, which is not the case.The question as quoted by you includes the word "the" , and this is misleading.
For commutative property of product we have that
$$(x + 5)(x - 2)=(x - 2)(x + 5)$$
note that also
$$(-x + 2)(-x - 5)$$
is a correct factorization.