Filter df when values matches part of a string in pyspark

When filtering a DataFrame with string values, I find that the pyspark.sql.functions lower and upper come in handy, if your data could have column entries like "foo" and "Foo":

import pyspark.sql.functions as sql_fun
result = source_df.filter(sql_fun.lower(source_df.col_name).contains("foo"))

Spark 2.2 onwards

df.filter(df.location.contains('google.com'))

Spark 2.2 documentation link


Spark 2.1 and before

You can use plain SQL in filter

df.filter("location like '%google.com%'")

or with DataFrame column methods

df.filter(df.location.like('%google.com%'))

Spark 2.1 documentation link


pyspark.sql.Column.contains() is only available in pyspark version 2.2 and above.

df.where(df.location.contains('google.com'))