Find a Rocco number
JavaScript (ES7), 55 bytes
n=>(g=k=>k>0&&n%--k?g(k):k==1)(n=(49+n)**.5-7)|g(n+=14)
Try it online!
How?
Given a positive integer \$n\$, we're looking for a prime \$x\$ such that \$x(x+14)=n\$ or \$x(x-14)=n\$.
Hence the following quadratic equations:
$$x^2+14x-n=0\tag{1}$$ $$x^2-14x-n=0\tag{2}$$
The positive root of \$(1)\$ is:
$$x_0=\sqrt{49+n}-7$$
and the positive root of \$(2)\$ is:
$$x_1=\sqrt{49+n}+7$$
Therefore, the problem is equivalent to testing whether either \$x_0\$ or \$x_1\$ is prime.
To do that, we use the classic recursive primality test function, with an additional test to make sure that it does not loop forever if it's given an irrational number as input.
g = k => // k = explicit input; this is the divisor
// we assume that the implicit input n is equal to k on the initial call
k > 0 && // abort if k is negative, which may happen if n is irrational
n % --k ? // decrement k; if k is not a divisor of n:
g(k) // do a recursive call
: // else:
k == 1 // returns true if k is equal to 1 (n is prime)
// or false otherwise (n is either irrational or a composite integer)
Main wrapper function:
n => g(n = (49 + n) ** .5 - 7) | g(n += 14)
05AB1E, 8 bytes
Returns \$1\$ if \$n\$ is a Rocco number, or \$0\$ otherwise.
fDŠ/α14å
Try it online!
How?
Given a positive integer \$n\$, we test whether there exists a prime factor \$p\$ of \$n\$ such that:
$$\left|p-\frac{n}{p}\right|=14$$
Commented
fDŠ/α14å # expects a positive integer n as input e.g. 2655
f # push the list of unique prime factors of n --> 2655, [ 3, 5, 59 ]
D # duplicate it --> 2655, [ 3, 5, 59 ], [ 3, 5, 59 ]
Š # moves the input n between the two lists --> [ 3, 5, 59 ], 2655, [ 3, 5, 59 ]
/ # divide n by each prime factor --> [ 3, 5, 59 ], [ 885, 531, 45 ]
α # compute the absolute differences
# between both remaining lists --> [ 882, 526, 14 ]
14å # does 14 appear in there? --> 1
Perl 6, 45 28 bytes
((*+49)**.5+(7|-7)).is-prime
Try it online!
Uses Arnauld's construction, that \$\sqrt{n+49}\pm7\$ must be prime for \$n\$ to be a Rocco number.
Explanation:
(*+49)**.5 # Is the sqrt of input+49
+(7|-7) # Plus or minus 7
( ).is-prime # Prime?