Find all subsets of length k in an array
Use a bit vector representation of the set, and use an algorithm similar to what std::next_permutation does on 0000.1111 (n-k zeroes, k ones). Each permutation corresponds to a subset of size k.
Recursion is your friend for this task.
For each element - "guess" if it is in the current subset, and recursively invoke with the guess and a smaller superset you can select from. Doing so for both the "yes" and "no" guesses - will result in all possible subsets.
Restraining yourself to a certain length can be easily done in a stop clause.
Java code:
private static void getSubsets(List<Integer> superSet, int k, int idx, Set<Integer> current,List<Set<Integer>> solution) {
//successful stop clause
if (current.size() == k) {
solution.add(new HashSet<>(current));
return;
}
//unseccessful stop clause
if (idx == superSet.size()) return;
Integer x = superSet.get(idx);
current.add(x);
//"guess" x is in the subset
getSubsets(superSet, k, idx+1, current, solution);
current.remove(x);
//"guess" x is not in the subset
getSubsets(superSet, k, idx+1, current, solution);
}
public static List<Set<Integer>> getSubsets(List<Integer> superSet, int k) {
List<Set<Integer>> res = new ArrayList<>();
getSubsets(superSet, k, 0, new HashSet<Integer>(), res);
return res;
}
Invoking with:
List<Integer> superSet = new ArrayList<>();
superSet.add(1);
superSet.add(2);
superSet.add(3);
superSet.add(4);
System.out.println(getSubsets(superSet,2));
Will yield:
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]