Find out the percentage of missing values in each column in the given dataset

Update let's use mean with isnull:

df.isnull().mean() * 100

Output:

Ord_id                 0.000000
Prod_id                0.000000
Ship_id                0.000000
Cust_id                0.000000
Sales                  0.238124
Discount               0.654840
Order_Quantity         0.654840
Profit                 0.654840
Shipping_Cost          0.654840
Product_Base_Margin    1.297774
dtype: float64

IIUC:

df.isnull().sum() / df.shape[0] * 100.00

Output:

Ord_id                 0.000000
Prod_id                0.000000
Ship_id                0.000000
Cust_id                0.000000
Sales                  0.238124
Discount               0.654840
Order_Quantity         0.654840
Profit                 0.654840
Shipping_Cost          0.654840
Product_Base_Margin    1.297774
dtype: float64

How about this? I think I actually found something similar on here once before, but I'm not seeing it now...

percent_missing = df.isnull().sum() * 100 / len(df)
missing_value_df = pd.DataFrame({'column_name': df.columns,
                                 'percent_missing': percent_missing})

And if you want the missing percentages sorted, follow the above with:

missing_value_df.sort_values('percent_missing', inplace=True)

As mentioned in the comments, you may also be able to get by with just the first line in my code above, i.e.:

percent_missing = df.isnull().sum() * 100 / len(df)