Finding $\lim\limits_{x \to 0}\ \frac{\sin(\cos(x))}{\sec(x)}$
As $\displaystyle x \to 0$, $\displaystyle \cos x \to 1$.
So you cannot use the limit $\displaystyle \lim_{h \to 0} \frac{\sin h}{h} = 1$.
The given answer is $\displaystyle \sin(1)$ I presume and not $\displaystyle \sin(0)$ (which is $0$)...