First two n such that $1355297$ divides$10^{6n+5}-54n-46$ for $n>0$

There is no need for a brute force search. There is also no need for compilation, which may run into the maximum compiled integer limit. A faster solution follows from a bit of theory. You can get the first 225000 solutions (up to $n\approx 306$ billion) in less than a second.

The original equation is ${\rm Mod}[10^{6n+5}-54n-46,p]=0$, where $p=1355297$.

Let $m=6n+5$ and write the equation as PowerMod[10,m,p]=Mod[9m+1,p].

The period of the cycle of PowerMod[10,x,p] for $x=1,2,3,...$ equals the period of the decimal expansion of $1/p$, for prime $p$. The length of the repeating decimal of $1/p$ is MultiplicativeOrder[10,p] which, in this case, equals $p-1$.

MultiplicativeOrder[10, 1355297]

1355296

These are all 1355296 distinct residues in the repeating cycle. This pre-calculation takes about 3/4 second.

residues = PowerMod[10, Range[1355296], 1355297]

The two modular equations are:

$m=i+j*(p-1)$, mod $p$, with $1\le i \le p-1$, and $j\ge 1$, from length-$(p-1)$ cycle of residues for PowerMod[10,m,p]

$9m+1=k*p+r_i$, mod $p$, with $0\le k$, from Mod[9m+1,p]=ri, the i'th residue.

Multiply the first equation by 9 and equate to give $a*j+b*k=c$, where $a=9*(p-1)$, $b=-p$, and $c=r_i-1-9*i$. Solve this linear Diophantine equation via ExtendedGCD[a,b].

ExtendedGCD[9(p-1),-p]={g,{u,v}}

{1, {301177, 2710591}}

Only the first term, $u=301177$, of the second part is required.

There are infinitely many solutions $\{j,k\}=\{u*c+b*q,v*c-a*q\}$, where $q\ge $0 and $a*u+b*v=1$ is found via ExtendendGCD[a,b]. The smallest solution occurs when q=Quotient[u*c,p]. The last step is to sort those solutions $m$ equivalent to 5, mod 6.

The first roughly quarter million solutions are found in about 1/4 second. The fastest of the current 3 answers was from @MichaelE2, where the first 10 solutions are found in about 0.68 s.

Block[{p = 1355297, i, u, uc},
   u = ExtendedGCD[9 (p - 1), -p][[2, 1]];
   AbsoluteTiming[
      i = Range[Length[residues]];
      uc = u*(residues[[i]] - 1 - 9 i);
      (Sort[Pick[#, Mod[#, 6], 5] &[i + (p - 1) (uc - p*Quotient[uc, p])]] - 5)/6
  ]]

{0.230856, {2331259, 3776127, 5366598, 5505709, 5652052, 7317951,..., 306133783114, 306135079824, 306136273333}}

Subsequent solutions follow by decreasing the integer q=Quotient[uc,p].


$n_1 = 2331259$, $n_2 = 3776127$,

Obtained from this Mathematica code:

cf = Compile[{{m, _Integer}},
  Block[{n, a, b, p, counter = 0,result},
   result = ConstantArray[0, m];
   p = 1355297;
   n = 0;
   a = Mod[10^(5), p];
   b = 0;
   While[counter < m,
    n++;
    a = Mod[a 1000000, p];
    b = Mod[b - 54 , p];
    While[Mod[a + b - 46, 1355297] != 0,
     n++;
     a = Mod[a 1000000, p];
     b = Mod[b - 54 , p];
     ];
    counter++;
    result[[counter]] = n;
    ];
   result
   ],
  CompilationTarget -> "C"
  ];

cf[2]

{2331259, 3776127}


A more Mathematica way to do an exhaustive search:

pp = 1355297;
Pick[#,
 Mod[10^5 NestList[Mod[10^6 #, pp] &, 10^6, Length@# - 1] - (54 n + 46 /. n -> #), pp],
 0] &@ Range[10^7] // AbsoluteTiming

(*  {0.665031, {2331259, 3776127, 5366598, 5505709, 5652052, 7317951, 8306396, 8955772}} *)

The same applied to chunks, which quits after at least 2 solutions are found.

Last@NestWhile[
  Function[args,            (* args = {current range, current solutions *)
   With[{range = Range @@ args[[1]], sols = args[[2]]},
    With[{s = Flatten[{
         sols,
         Pick[range, 
          Mod[10^5 NestList[Mod[10^6 #, pp] &, 
              PowerMod[10^6, First@range, pp], 
              Length@range - 1] - (54 n + 46 /. n -> range),
           pp],
          0]
         }]},
     {args[[1]] + 10^6, s}  (* increment range *)
     ]]
   ],
  {{1, 10^6}, {}},          (* {initial range, initial solutions *)
  Length[#[[2]]] < 2 &,     (* min. number of solutions *)
  1,
  100                       (* MaxIterations *)
  ] // RepeatedTiming

(*  {0.27, {2331259, 3776127}}  *)

Somewhat surprisingly, it is faster than Henrik's compiled-to-C solution:

cf[2] // RepeatedTiming
(*  {0.283, {2331259, 3776127}}  *)

Remark: Disappointingly, PowerMod is slow, so I used NestList:

foo = NestList[Mod[10^6 #, pp] &, 10^6, Length@# - 1] &[Range[10^7]]; // AbsoluteTiming
(*  {0.480641, Null}  *)

murf = PowerMod[10^6, Range[10^7], pp]; // AbsoluteTiming
(*  {7.97349, Null}  *)

foo == murf
(*  True  *)