Floating point vs integer calculations on modern hardware

TIL This varies (a lot). Here are some results using gnu compiler (btw I also checked by compiling on machines, gnu g++ 5.4 from xenial is a hell of a lot faster than 4.6.3 from linaro on precise)

Intel i7 4700MQ xenial

short add: 0.822491
short sub: 0.832757
short mul: 1.007533
short div: 3.459642
long add: 0.824088
long sub: 0.867495
long mul: 1.017164
long div: 5.662498
long long add: 0.873705
long long sub: 0.873177
long long mul: 1.019648
long long div: 5.657374
float add: 1.137084
float sub: 1.140690
float mul: 1.410767
float div: 2.093982
double add: 1.139156
double sub: 1.146221
double mul: 1.405541
double div: 2.093173

Intel i3 2370M has similar results

short add: 1.369983
short sub: 1.235122
short mul: 1.345993
short div: 4.198790
long add: 1.224552
long sub: 1.223314
long mul: 1.346309
long div: 7.275912
long long add: 1.235526
long long sub: 1.223865
long long mul: 1.346409
long long div: 7.271491
float add: 1.507352
float sub: 1.506573
float mul: 2.006751
float div: 2.762262
double add: 1.507561
double sub: 1.506817
double mul: 1.843164
double div: 2.877484

Intel(R) Celeron(R) 2955U (Acer C720 Chromebook running xenial)

short add: 1.999639
short sub: 1.919501
short mul: 2.292759
short div: 7.801453
long add: 1.987842
long sub: 1.933746
long mul: 2.292715
long div: 12.797286
long long add: 1.920429
long long sub: 1.987339
long long mul: 2.292952
long long div: 12.795385
float add: 2.580141
float sub: 2.579344
float mul: 3.152459
float div: 4.716983
double add: 2.579279
double sub: 2.579290
double mul: 3.152649
double div: 4.691226

DigitalOcean 1GB Droplet Intel(R) Xeon(R) CPU E5-2630L v2 (running trusty)

short add: 1.094323
short sub: 1.095886
short mul: 1.356369
short div: 4.256722
long add: 1.111328
long sub: 1.079420
long mul: 1.356105
long div: 7.422517
long long add: 1.057854
long long sub: 1.099414
long long mul: 1.368913
long long div: 7.424180
float add: 1.516550
float sub: 1.544005
float mul: 1.879592
float div: 2.798318
double add: 1.534624
double sub: 1.533405
double mul: 1.866442
double div: 2.777649

AMD Opteron(tm) Processor 4122 (precise)

short add: 3.396932
short sub: 3.530665
short mul: 3.524118
short div: 15.226630
long add: 3.522978
long sub: 3.439746
long mul: 5.051004
long div: 15.125845
long long add: 4.008773
long long sub: 4.138124
long long mul: 5.090263
long long div: 14.769520
float add: 6.357209
float sub: 6.393084
float mul: 6.303037
float div: 17.541792
double add: 6.415921
double sub: 6.342832
double mul: 6.321899
double div: 15.362536

This uses code from http://pastebin.com/Kx8WGUfg as benchmark-pc.c

g++ -fpermissive -O3 -o benchmark-pc benchmark-pc.c

I've run multiple passes, but this seems to be the case that general numbers are the same.

One notable exception seems to be ALU mul vs FPU mul. Addition and subtraction seem trivially different.

Here is the above in chart form (click for full size, lower is faster and preferable):

Chart of above data

Update to accomodate @Peter Cordes

https://gist.github.com/Lewiscowles1986/90191c59c9aedf3d08bf0b129065cccc

i7 4700MQ Linux Ubuntu Xenial 64-bit (all patches to 2018-03-13 applied)
    short add: 0.773049
    short sub: 0.789793
    short mul: 0.960152
    short div: 3.273668
      int add: 0.837695
      int sub: 0.804066
      int mul: 0.960840
      int div: 3.281113
     long add: 0.829946
     long sub: 0.829168
     long mul: 0.960717
     long div: 5.363420
long long add: 0.828654
long long sub: 0.805897
long long mul: 0.964164
long long div: 5.359342
    float add: 1.081649
    float sub: 1.080351
    float mul: 1.323401
    float div: 1.984582
   double add: 1.081079
   double sub: 1.082572
   double mul: 1.323857
   double div: 1.968488
AMD Opteron(tm) Processor 4122 (precise, DreamHost shared-hosting)
    short add: 1.235603
    short sub: 1.235017
    short mul: 1.280661
    short div: 5.535520
      int add: 1.233110
      int sub: 1.232561
      int mul: 1.280593
      int div: 5.350998
     long add: 1.281022
     long sub: 1.251045
     long mul: 1.834241
     long div: 5.350325
long long add: 1.279738
long long sub: 1.249189
long long mul: 1.841852
long long div: 5.351960
    float add: 2.307852
    float sub: 2.305122
    float mul: 2.298346
    float div: 4.833562
   double add: 2.305454
   double sub: 2.307195
   double mul: 2.302797
   double div: 5.485736
Intel Xeon E5-2630L v2 @ 2.4GHz (Trusty 64-bit, DigitalOcean VPS)
    short add: 1.040745
    short sub: 0.998255
    short mul: 1.240751
    short div: 3.900671
      int add: 1.054430
      int sub: 1.000328
      int mul: 1.250496
      int div: 3.904415
     long add: 0.995786
     long sub: 1.021743
     long mul: 1.335557
     long div: 7.693886
long long add: 1.139643
long long sub: 1.103039
long long mul: 1.409939
long long div: 7.652080
    float add: 1.572640
    float sub: 1.532714
    float mul: 1.864489
    float div: 2.825330
   double add: 1.535827
   double sub: 1.535055
   double mul: 1.881584
   double div: 2.777245

Alas, I can only give you an "it depends" answer...

From my experience, there are many, many variables to performance...especially between integer & floating point math. It varies strongly from processor to processor (even within the same family such as x86) because different processors have different "pipeline" lengths. Also, some operations are generally very simple (such as addition) and have an accelerated route through the processor, and others (such as division) take much, much longer.

The other big variable is where the data reside. If you only have a few values to add, then all of the data can reside in cache, where they can be quickly sent to the CPU. A very, very slow floating point operation that already has the data in cache will be many times faster than an integer operation where an integer needs to be copied from system memory.

I assume that you are asking this question because you are working on a performance critical application. If you are developing for the x86 architecture, and you need extra performance, you might want to look into using the SSE extensions. This can greatly speed up single-precision floating point arithmetic, as the same operation can be performed on multiple data at once, plus there is a separate* bank of registers for the SSE operations. (I noticed in your second example you used "float" instead of "double", making me think you are using single-precision math).

*Note: Using the old MMX instructions would actually slow down programs, because those old instructions actually used the same registers as the FPU does, making it impossible to use both the FPU and MMX at the same time.


For example (lesser numbers are faster),

64-bit Intel Xeon X5550 @ 2.67GHz, gcc 4.1.2 -O3

short add/sub: 1.005460 [0]
short mul/div: 3.926543 [0]
long add/sub: 0.000000 [0]
long mul/div: 7.378581 [0]
long long add/sub: 0.000000 [0]
long long mul/div: 7.378593 [0]
float add/sub: 0.993583 [0]
float mul/div: 1.821565 [0]
double add/sub: 0.993884 [0]
double mul/div: 1.988664 [0]

32-bit Dual Core AMD Opteron(tm) Processor 265 @ 1.81GHz, gcc 3.4.6 -O3

short add/sub: 0.553863 [0]
short mul/div: 12.509163 [0]
long add/sub: 0.556912 [0]
long mul/div: 12.748019 [0]
long long add/sub: 5.298999 [0]
long long mul/div: 20.461186 [0]
float add/sub: 2.688253 [0]
float mul/div: 4.683886 [0]
double add/sub: 2.700834 [0]
double mul/div: 4.646755 [0]

As Dan pointed out, even once you normalize for clock frequency (which can be misleading in itself in pipelined designs), results will vary wildly based on CPU architecture (individual ALU/FPU performance, as well as actual number of ALUs/FPUs available per core in superscalar designs which influences how many independent operations can execute in parallel -- the latter factor is not exercised by the code below as all operations below are sequentially dependent.)

Poor man's FPU/ALU operation benchmark:

#include <stdio.h>
#ifdef _WIN32
#include <sys/timeb.h>
#else
#include <sys/time.h>
#endif
#include <time.h>
#include <cstdlib>

double
mygettime(void) {
# ifdef _WIN32
  struct _timeb tb;
  _ftime(&tb);
  return (double)tb.time + (0.001 * (double)tb.millitm);
# else
  struct timeval tv;
  if(gettimeofday(&tv, 0) < 0) {
    perror("oops");
  }
  return (double)tv.tv_sec + (0.000001 * (double)tv.tv_usec);
# endif
}

template< typename Type >
void my_test(const char* name) {
  Type v  = 0;
  // Do not use constants or repeating values
  //  to avoid loop unroll optimizations.
  // All values >0 to avoid division by 0
  // Perform ten ops/iteration to reduce
  //  impact of ++i below on measurements
  Type v0 = (Type)(rand() % 256)/16 + 1;
  Type v1 = (Type)(rand() % 256)/16 + 1;
  Type v2 = (Type)(rand() % 256)/16 + 1;
  Type v3 = (Type)(rand() % 256)/16 + 1;
  Type v4 = (Type)(rand() % 256)/16 + 1;
  Type v5 = (Type)(rand() % 256)/16 + 1;
  Type v6 = (Type)(rand() % 256)/16 + 1;
  Type v7 = (Type)(rand() % 256)/16 + 1;
  Type v8 = (Type)(rand() % 256)/16 + 1;
  Type v9 = (Type)(rand() % 256)/16 + 1;

  double t1 = mygettime();
  for (size_t i = 0; i < 100000000; ++i) {
    v += v0;
    v -= v1;
    v += v2;
    v -= v3;
    v += v4;
    v -= v5;
    v += v6;
    v -= v7;
    v += v8;
    v -= v9;
  }
  // Pretend we make use of v so compiler doesn't optimize out
  //  the loop completely
  printf("%s add/sub: %f [%d]\n", name, mygettime() - t1, (int)v&1);
  t1 = mygettime();
  for (size_t i = 0; i < 100000000; ++i) {
    v /= v0;
    v *= v1;
    v /= v2;
    v *= v3;
    v /= v4;
    v *= v5;
    v /= v6;
    v *= v7;
    v /= v8;
    v *= v9;
  }
  // Pretend we make use of v so compiler doesn't optimize out
  //  the loop completely
  printf("%s mul/div: %f [%d]\n", name, mygettime() - t1, (int)v&1);
}

int main() {
  my_test< short >("short");
  my_test< long >("long");
  my_test< long long >("long long");
  my_test< float >("float");
  my_test< double >("double");

  return 0;
}