Generalised Hardy-Ramanujan Numbers
Guy, Unsolved Problems In Number Theory, 3rd edition, D1, writes, "... it is not known if there is any nontrivial solution of $a^5+b^5=c^5+d^5$. Dick Lehmer once thought that there might be a solution with a sum of about 25 decimal digits, but a search by Blair Kelly yielded no nontrivial solution with sum $\le1.02\times10^{26}$."
At F30, Guy writes, "... $x^5$ is a likely answer to the following unsolved problem of Erdos. Find a polynomial $P(x)$ such that all the sums $P(a)+P(b)$ ($0\le a\lt b$) are distinct."
The book was published in 2004. I don't know whether there has been any progress since.