Hölder Inequality
First we apply
$$\sum_{i =1}^{n}x_{i}y_{i}\leq\left(\sum_{i=1}^{n}x_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i =1}^{n}y_{i}^{q}\right)^{\frac{1}{q}}$$
with $p=k$, $q=k/(k-1)$, $x_i=a_i/b_i^{1/k}$, $y_i=b_i^{1/k}$ ,
to get
$$\sum_i a_i \leq \left(a_i^k/b_i \right)^{1/k} \left( b_i^{1/(k-1)} \right)^{(k-1)/k} \; ,$$
which is equivalent to
$$\left( \sum_i a_i \right)^k \leq \left( \sum_i a_i^k/b_i \right) \left( \sum_i b_i^{1/(k-1)} \right)^{k-1} \; .$$
By concavity of $x \mapsto x^{1/(k-1)}$ (I guess $k \geq 2$), we also have that
$$1/n \sum_i b_i^{1/(k-1)} \leq \left( \sum_i b_i/n \right)^{1/(k-1)}$$
which combined with the preceding inequality, gives the desired result.