How can I create a memory leak in Java?
Static field holding an object reference [especially a final field]
class MemorableClass {
static final ArrayList list = new ArrayList(100);
}
Calling String.intern()
on a lengthy string
String str = readString(); // read lengthy string any source db,textbox/jsp etc..
// This will place the string in memory pool from which you can't remove
str.intern();
(Unclosed) open streams (file , network, etc.)
try {
BufferedReader br = new BufferedReader(new FileReader(inputFile));
...
...
} catch (Exception e) {
e.printStackTrace();
}
Unclosed connections
try {
Connection conn = ConnectionFactory.getConnection();
...
...
} catch (Exception e) {
e.printStackTrace();
}
Areas that are unreachable from JVM's garbage collector, such as memory allocated through native methods.
In web applications, some objects are stored in application scope until the application is explicitly stopped or removed.
getServletContext().setAttribute("SOME_MAP", map);
Incorrect or inappropriate JVM options, such as the noclassgc
option on IBM JDK that prevents unused class garbage collection
See IBM JDK settings.
Here's a good way to create a true memory leak (objects inaccessible by running code but still stored in memory) in pure Java:
- The application creates a long-running thread (or use a thread pool to leak even faster).
- The thread loads a class via an (optionally custom)
ClassLoader
. - The class allocates a large chunk of memory (e.g.
new byte[1000000]
), stores a strong reference to it in a static field, and then stores a reference to itself in aThreadLocal
. Allocating the extra memory is optional (leaking the class instance is enough), but it will make the leak work that much faster. - The application clears all references to the custom class or the
ClassLoader
it was loaded from. - Repeat.
Due to the way ThreadLocal
is implemented in Oracle's JDK, this creates a memory leak:
- Each
Thread
has a private fieldthreadLocals
, which actually stores the thread-local values. - Each key in this map is a weak reference to a
ThreadLocal
object, so after thatThreadLocal
object is garbage-collected, its entry is removed from the map. - But each value is a strong reference, so when a value (directly or indirectly) points to the
ThreadLocal
object that is its key, that object will neither be garbage-collected nor removed from the map as long as the thread lives.
In this example, the chain of strong references looks like this:
Thread
object → threadLocals
map → instance of example class → example class → static ThreadLocal
field → ThreadLocal
object.
(The ClassLoader
doesn't really play a role in creating the leak, it just makes the leak worse because of this additional reference chain: example class → ClassLoader
→ all the classes it has loaded. It was even worse in many JVM implementations, especially prior to Java 7, because classes and ClassLoader
s were allocated straight into permgen and were never garbage-collected at all.)
A variation on this pattern is why application containers (like Tomcat) can leak memory like a sieve if you frequently redeploy applications which happen to use ThreadLocal
s that in some way point back to themselves. This can happen for a number of subtle reasons and is often hard to debug and/or fix.
Update: Since lots of people keep asking for it, here's some example code that shows this behavior in action.