How can I draw isometric dot paper with a scale size of 1cm with TikZ?
Update 2: new coordinate system defined with pgfkeys
Coordinates are given in the same style as the native implicit coordinates of tikz, i.e. 3 numbers separated by commas. They are prefixed by iso cs:
as for example: (iso cs:0,1,7)
\documentclass[tikz,border=5mm]{standalone}
\usetikzlibrary{arrows.meta}
\pgfkeys{/isometrique/.cd,
coordonnee/.code args={#1,#2,#3}
{
\def\myx{#1}
\def\myy{#2}
\def\myz{#3}
}
}
\tikzdeclarecoordinatesystem{isometric}
{
\pgfkeys{/isometrique/.cd,
coordonnee={#1}}
\pgfpointadd{\pgfpointxyz{0}{\myz}{0}}{\pgfpointadd{\pgfpointpolarxy{-30}{\myx}}{\pgfpointpolarxy{30}{\myy}}}
}
\tikzaliascoordinatesystem{iso}{isometric}
\begin{document}
\begin{tikzpicture}[>={Triangle[angle=45:4pt 3]}]
\newcommand{\nbx}{11}%<--number of point on one row
\newcommand{\nby}{9}%<-- number of point on one column
\foreach \j in {0,...,\the\numexpr\nby-1} {
\foreach \i in {0,...,\the\numexpr\nbx-1}
{\fill[black](90:\j)++(0:{2*\i*cos(30)})circle[radius=1pt]+(30:1)circle[radius=1pt];
}}
\draw[very thick,red,->](0,0)--node[sloped,below]{$y=6$}(iso cs:0,4,0);
\draw[very thick,blue,->](iso cs:0,4,0)-- node[sloped,above]{$x=2$}++(iso cs:2,0,0);
\draw[very thick,red,->](iso cs:2,4,0)-- node[sloped,below]{$z=3$}++(iso cs:0,0,3);
% Arrows showing the newest coordinate system "iso"
\draw [blue,thick,->](0,4)--node[below]{x}++(iso cs:1,0,0);
\draw [red,thick,->](0,4)--node[left]{y}++(iso cs:0,1,0);
\draw [violet,thick,->](0,4)--node[left]{z}++(iso cs:0,0,1);
\node[below,align=center,draw,fill=white] at (iso cs:0,1,2.7){New \textbf{iso} \\ coordinate system};
\begin{scope}[shift={(iso cs:2,4,3)}]
\draw[blue,thick] (iso cs:0,0,0)--++ (iso cs:3,0,0)
--++ (iso cs:0,3,0)
--++ (iso cs:0,0,3)
--++ (iso cs:-3,0,0)
--++ (iso cs:0,-3,0)
--++(iso cs:0,0,-3)
(0,3)--++(iso cs:3,0,0)--+(0,-3)
(iso cs:0,3,0)--+(iso cs:0,3,0);
\end{scope}
\end{tikzpicture}
\end{document}
Update Addition of another coordinate system with a vertical key z
(at Tobi's request)
Its disadvantage is to be more verbose since you have to write 3 coordinates instead of 2.
With keyvals since here the keys are defined with keyval
package, we can define default values and write for example (trio cs:x,y=2,z)
instead of (trio cs:x=0,y=2,z=0)
.
Here, the keys have default values, that is to say that if no value is given, they are worth the default value.
\documentclass[tikz,border=5mm]{standalone}
%\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\makeatletter
\define@key{triangularokeys}{x}[0]{\def\myx{#1}}
\define@key{triangularokeys}{y}[0]{\def\myy{#1}}
\define@key{triangularokeys}{z}[0]{\def\myz{#1}}
\tikzdeclarecoordinatesystem{triangularo}%
{%
\setkeys{triangularokeys}{#1}%
\pgfpointadd{\pgfpointxyz{0}{\myz}{0}}{\pgfpointadd{\pgfpointpolarxy{-30}{\myx}}{\pgfpointpolarxy{30}{\myy}}
}
}
\makeatother
\tikzaliascoordinatesystem{trio}{triangularo}
\begin{document}
\begin{tikzpicture}[>={Stealth[]}]
\newcommand{\nbx}{11}%<--number of point on one row
\newcommand{\nby}{9}%<-- number of point on one column
\foreach \j in {0,...,\the\numexpr\nby-1} {
\foreach \i in {0,...,\the\numexpr\nbx-1}
{\fill[black](90:\j)++(0:{2*\i*cos(30)})circle[radius=1pt]+(30:1)circle[radius=1pt];
}}
\draw[very thick,red,->](0,0)--node[sloped,below]{$y=6$}(trio cs:x=0,y=4,z=0);
\draw[very thick,red,->](trio cs:x,y=4,z)-- node[sloped,above]{$x=2$}++(trio cs:x=2,y,z);
\draw[very thick,red,->](trio cs:x=2,y=4,z)-- node[sloped,below]{$z=3$}++(trio cs:x,y,z=3);
% Arrows showing the newest coordinate system "trio"
\draw [blue,thick,->](0,4)--node[below]{x}++(trio cs:x=1,y,z);
\draw [red,thick,->](0,4)--node[left]{y}++(trio cs:x,y=1,z);
\draw [violet,thick,->](0,4)--node[left]{z}++(trio cs:x,y,z=1);
\node[below,align=center] at (trio cs:x,y=1,z=3){New trio \\ coordinate system};
\begin{scope}[shift={(trio cs:x=2,y=4,z=3)}]
\draw[blue,thick] (trio cs:x,y,z)--++ (trio cs:x=3,y,z)
--++ (trio cs:x,y=3,z)
--++ (trio cs:x,y,z=3)
--++ (trio cs:x=-3,y,z)
--++ (trio cs:x,y=-3,z)
--++(trio cs:x,y,z=-3)
(0,3)--++(trio cs:x=3,y,z)--+(0,-3)
(trio cs:x,y=3,z)--+(trio cs:x,y=3,z);
\end{scope}
\end{tikzpicture}
\end{document}
First answer With a coordinate system called tri
with the x
and y
keys.
In addition to the Cartesian coordinates, I have defined a new coordinate system that makes it "simpler" to draw figures on this grid.
It is called triangular
and its alias is tri
.
For example, the first red arrow is drawn like this:
\draw[very thick,red,->](0,0)--(tri cs:x=0,y=7);
The second arrow is defined as follows:
\draw[very thick,red,->](tri cs:x=0,y=7)--++(tri cs:x=2,y=0);
You'll notice that you can mix the two coordinate systems in the same path and use the relative coordinate.
Code
\documentclass[tikz,border=5mm]{standalone}
%\usepackage{tikz}
\usetikzlibrary{arrows.meta}
% new coordinate system called triangular
\makeatletter
\define@key{triangularkeys}{x}{\def\myx{#1}}
\define@key{triangularkeys}{y}{\def\myy{#1}}
\tikzdeclarecoordinatesystem{triangular}%
{%
\setkeys{triangularkeys}{#1}%
\pgfpointadd{\pgfpointpolarxy{-30}{\myx}}{\pgfpointpolarxy{30}{\myy}}
}
\makeatother
% end of new coordinate system
\tikzaliascoordinatesystem{tri}{triangular}%<-- define the alias tri for triangular
\begin{document}
\begin{tikzpicture}[>={Stealth[]}]
\newcommand{\nbx}{11}%<--number of dots in a single row
\newcommand{\nby}{9}%<-- number of dots in a single column
% Drawing of the isometric grid
\foreach \j in {0,...,\the\numexpr\nby-1} {
\foreach \i in {0,...,\the\numexpr\nbx-1}
{\fill[black](90:\j)++(0:{2*\i*cos(30)})circle[radius=1pt]+(30:1)circle[radius=1pt];
}}
% The following code below shows how to draw on this grid
% Arrows showing the new coordinate system
\draw [blue,thick,->](0,4)--node[below]{x}++(tri cs:x=1,y=0);
\draw [red,thick,->](0,4)--node[left]{y}++(tri cs:x=0,y=1);
% Big red arrow going from the bottom left to the perspective cube
\draw[very thick,red,->](0,0)--node[sloped,below]{$y=7$}(tri cs:x=0,y=7);
\draw[very thick,red,->](tri cs:x=0,y=7)-- node[sloped,above]{$x=2$}++(tri cs:x=2,y=0);
% Cube perspective drawing
\begin{scope}[shift={(tri cs:x=2,y=7)}]
\draw (tri cs:x=0,y=0)circle(3pt)--++ (tri cs:x=3,y=0)
--++ (tri cs:x=0,y=3)
--++ (0,3)
--++ (tri cs:x=-3,y=0)
--++ (tri cs:x=0,y=-3)
--++(0,-3)
(0,3)--++(tri cs:x=3,y=0)--+(0,-3)
(tri cs:x=0,y=3)--+(tri cs:x=0,y=3);
\end{scope}
\end{tikzpicture}
\end{document}
Just for fun, a pure PostScript solution for making 1-cm-scale isometric dotted paper in A4 (595 bp * 842 bp). Can be directly sent to a PostScript printer.
Use ps2pdf
if you need a PDF; but it is much bigger [38 kB] than the PS [242 B]. (The PS code was somewhat optimized for size, though not too aggressively in order not to sacrifice legibility.)
isometricdottedA4.ps
:
%!
<</PageSize [595 842]>> setpagedevice
/cm {28.346457 mul} def
[.866 .5 -.866 .5 595 2 div 842 41 cm sub 2 div] concat
0 1 41 { cm
0 1 41 { cm 1 index exch moveto
gsave initmatrix currentpoint 2 0 360 arc fill grestore
} for pop
} for
Isometric dots could easily be created by modifying the x
and y
coordinates and then putting dots on a grid. However we could need to clip the result, because we basically rotated the coordinate system. The scale has to be adopted to your liking, as I asked how the 1cm
shall be defined and now used the assumption of @AlexG.
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}[x={(0.86cm,0.5cm)},y={(-0.86cm,0.5cm)}]
\clip (0,12.5) rectangle (25,12.5);
\foreach \x in {0,...,25}
\foreach \y in {0,...,25}
{
\fill (\x,\y) circle (2pt);
}
\end{tikzpicture}
\end{document}
Edit after the comments of Jon
I took some measurements with Adobe Acrobat in the PDF created from the code above and this is the result:
So which measurement needs to be 1cm, if you take this image as a reference?
The isometric A4-paper
\documentclass[tikz,border={0.23cm 0.25cm}]{standalone}
\begin{document}
\begin{tikzpicture}[x={(0.86cm,0.5cm)},y={(-0.86cm,0.5cm)}]
\clip (0,25.5) rectangle (37.5,29);
\foreach \x in {0,...,50}
\foreach \y in {0,...,50}
{
\fill (\x,\y) circle (2pt);
}
\end{tikzpicture}
\end{document}