How can I find the coefficients of the next recursive symbolic function?

The recurrence relation can be represented by

f[0] = f0; f[1] = f1; f[2] = f2; f[n_] := f[n] = Simplify[-m f[n - 1] + f[n - 3]]

based on which, the coefficients of {f2, f1, f0} for n = 4 are given by

CoefficientArrays[f[4], {f2, f1, f0}][[2]] // Normal
(* {m^2, 1, -m} *)

which agrees with the results predicted in the question. Coefficients for larger values of n are obtained similarly. For instance

CoefficientArrays[f[5], {f2, f1, f0}][[2]] // Normal
(* {1 - m^3, -m, m^2} *)

CoefficientArrays[f[25], {f2, f1, f0}][[2]] // Normal
(* {36 m^2 - 462 m^5 + 1287 m^8 - 1365 m^11 + 680 m^14 - 171 m^17 + 21 m^20 - m^23, 
    1 - 84 m^3 + 462 m^6 - 715 m^9 + 455 m^12 - 136 m^15 + 19 m^18 - m^21, 
    -8 m + 210 m^4 - 792 m^7 + 1001 m^10 - 560 m^13 + 153 m^16 - 20 m^19 + m^22} *)

Improved Timing

In a comment below, Mr. Wizard suggested using Factor instead of Simplify in the definition of f[n]. This modification reduces AbsoluteTiming from 4.2 sec to 0.12 sec for f[100]. Note that not using either make the computation prohibitively slow and memory-intensive.


A slick reformulation of bbgodfrey's answer is to recognize that the required computation is equivalent to evaluating an appropriate matrix power:

With[{n = 5},
     MatrixPower[{{-m, 1, 0}, {0, 0, 1}, {1, 0, 0}}, n - 2, {1, 0, 0}]] // Simplify
   {1 - m^3, -m, m^2}

With[{n = 25},
     MatrixPower[{{-m, 1, 0}, {0, 0, 1}, {1, 0, 0}}, n - 2, {1, 0, 0}]] // Simplify
   {-m^2 (-36 + 462 m^3 - 1287 m^6 + 1365 m^9 - 680 m^12 + 171 m^15 - 21 m^18 + m^21), 
    1 - 84 m^3 + 462 m^6 - 715 m^9 + 455 m^12 - 136 m^15 + 19 m^18 - m^21,
    m (-8 + 210 m^3 - 792 m^6 + 1001 m^9 - 560 m^12 + 153 m^15 - 20 m^18 + m^21)}

Note that I have explicitly used the action form of MatrixPower[], since we are only interested in a single column, and not the whole matrix.