How can I visualize and calculate the volume of this $3$-dimensional object?
You can try RegionPlot3D
:
RegionPlot3D[Sin[u] <= Cos[v] && Sin[v] <= Cos[w] && Sin[w] <= Cos[u],
{u, 0, 4 Pi}, {v, 0, 4 Pi}, {w, 0, 4 Pi}, PlotPoints -> 90]
Or use ImplicitRegion
:
ir = ImplicitRegion[Sin[u] <= Cos[v] && Sin[v] <= Cos[w] && Sin[w] <= Cos[u],
{{u, 0, 4 Pi}, {v, 0, 4 Pi}, {w, 0, 4 Pi}}];
RegionPlot3D[ir, PlotPoints -> 100]
I question the accuracy of the volume calculated by DiscretizeRegion: Just excise one out of the bunch to get the plot:
First compute the volume via DiscretizeRegion:
ir = ImplicitRegion[
Sin[u] <= Cos[v] && Sin[v] <= Cos[w] &&
Sin[w] <= Cos[u], {{u, Pi/2, 3 Pi}, {v, Pi/2, 3 Pi}, {w, Pi/2,
3 Pi}}]; Volume@DiscretizeRegion@ir
Results: 32.54
Now do a Monte-Carlo integration series from 5000 to 1000000 points:
myTable = Table[
myPts = RandomReal[{Pi/2, 3 Pi}, {num, 3}];
pts = Length@
Select[myPts, (Sin[#[[1]]] <= Cos[#[[2]]] &&
Sin[#[[2]]] <= Cos[#[[3]]] && Sin[#[[3]]] <= Cos[#[[1]]]) &];
pts/num (5 Pi/2)^3 // N, {num, 5000, 1000000, 5000}];
and plot the results and do a Fit of the data:
Fit[myTable, {1, x}, x]
34.9067 -0.000148992 x
which appears to be settling on a value significantly higher than 32.5 computed by DiscretizeRegion.