How do I calculate square root in Python?
SymPy
Depending on your goal, it might be a good idea to delay the calculation of square roots for as long as possible. SymPy might help.
SymPy is a Python library for symbolic mathematics.
import sympy
sympy.sqrt(2)
# => sqrt(2)
This doesn't seem very useful at first.
But sympy can give more information than floats or Decimals:
sympy.sqrt(8) / sympy.sqrt(27)
# => 2*sqrt(6)/9
Also, no precision is lost. (√2)² is still an integer:
s = sympy.sqrt(2)
s**2
# => 2
type(s**2)
#=> <class 'sympy.core.numbers.Integer'>
In comparison, floats and Decimals would return a number which is very close to 2 but not equal to 2:
(2**0.5)**2
# => 2.0000000000000004
from decimal import Decimal
(Decimal('2')**Decimal('0.5'))**Decimal('2')
# => Decimal('1.999999999999999999999999999')
Sympy also understands more complex examples like the Gaussian integral:
from sympy import Symbol, integrate, pi, sqrt, exp, oo
x = Symbol('x')
integrate(exp(-x**2), (x, -oo, oo))
# => sqrt(pi)
integrate(exp(-x**2), (x, -oo, oo)) == sqrt(pi)
# => True
Finally, if a decimal representation is desired, it's possible to ask for more digits than will ever be needed:
sympy.N(sympy.sqrt(2), 1_000_000)
# => 1.4142135623730950488016...........2044193016904841204
Option 1: math.sqrt()
The math
module from the standard library has a sqrt
function to calculate the square root of a number. It takes any type that can be converted to float
(which includes int
) as an argument and returns a float
.
>>> import math
>>> math.sqrt(9)
3.0
Option 2: Fractional exponent
The power operator (**
) or the built-in pow()
function can also be used to calculate a square root. Mathematically speaking, the square root of a
equals a
to the power of 1/2
.
The power operator requires numeric types and matches the conversion rules for binary arithmetic operators, so in this case it will return either a float
or a complex
number.
>>> 9 ** (1/2)
3.0
>>> 9 ** .5 # Same thing
3.0
>>> 2 ** .5
1.4142135623730951
(Note: in Python 2, 1/2
is truncated to 0
, so you have to force floating point arithmetic with 1.0/2
or similar. See Why does Python give the "wrong" answer for square root?)
This method can be generalized to nth root, though fractions that can't be exactly represented as a float
(like 1/3 or any denominator that's not a power of 2) may cause some inaccuracy:
>>> 8 ** (1/3)
2.0
>>> 125 ** (1/3)
4.999999999999999
Edge cases
Negative and complex
Exponentiation works with negative numbers and complex numbers, though the results have some slight inaccuracy:
>>> (-25) ** .5 # Should be 5j
(3.061616997868383e-16+5j)
>>> 8j ** .5 # Should be 2+2j
(2.0000000000000004+2j)
Note the parentheses on -25
! Otherwise it's parsed as -(25**.5)
because exponentiation is more tightly binding than unary negation.
Meanwhile, math
is only built for floats, so for x<0
, math.sqrt(x)
will raise ValueError: math domain error
and for complex x
, it'll raise TypeError: can't convert complex to float
. Instead, you can use cmath.sqrt(x)
, which is more more accurate than exponentiation (and will likely be faster too):
>>> import cmath
>>> cmath.sqrt(-25)
5j
>>> cmath.sqrt(8j)
(2+2j)
Precision
Both options involve an implicit conversion to float
, so floating point precision is a factor. For example:
>>> n = 10**30
>>> x = n**2
>>> root = x**.5
>>> n == root
False
>>> n - root # how far off are they?
0.0
>>> int(root) - n # how far off is the float from the int?
19884624838656
Very large numbers might not even fit in a float and you'll get OverflowError: int too large to convert to float
. See Python sqrt limit for very large numbers?
Other types
Let's look at Decimal
for example:
Exponentiation fails unless the exponent is also Decimal
:
>>> decimal.Decimal('9') ** .5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for ** or pow(): 'decimal.Decimal' and 'float'
>>> decimal.Decimal('9') ** decimal.Decimal('.5')
Decimal('3.000000000000000000000000000')
Meanwhile, math
and cmath
will silently convert their arguments to float
and complex
respectively, which could mean loss of precision.
decimal
also has its own .sqrt()
. See also calculating n-th roots using Python 3's decimal module