How do I determine k when using k-means clustering?

Yes, you can find the best number of clusters using Elbow method, but I found it troublesome to find the value of clusters from elbow graph using script. You can observe the elbow graph and find the elbow point yourself, but it was lot of work finding it from script.

So another option is to use Silhouette Method to find it. The result from Silhouette completely comply with result from Elbow method in R.

Here`s what I did.

#Dataset for Clustering
n = 150
g = 6 
set.seed(g)
d <- data.frame(x = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))), 
                y = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))))
mydata<-d
#Plot 3X2 plots
attach(mtcars)
par(mfrow=c(3,2))

#Plot the original dataset
plot(mydata$x,mydata$y,main="Original Dataset")

#Scree plot to deterine the number of clusters
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
  for (i in 2:15) {
    wss[i] <- sum(kmeans(mydata,centers=i)$withinss)
}   
plot(1:15, wss, type="b", xlab="Number of Clusters",ylab="Within groups sum of squares")

# Ward Hierarchical Clustering
d <- dist(mydata, method = "euclidean") # distance matrix
fit <- hclust(d, method="ward") 
plot(fit) # display dendogram
groups <- cutree(fit, k=5) # cut tree into 5 clusters
# draw dendogram with red borders around the 5 clusters 
rect.hclust(fit, k=5, border="red")

#Silhouette analysis for determining the number of clusters
library(fpc)
asw <- numeric(20)
for (k in 2:20)
  asw[[k]] <- pam(mydata, k) $ silinfo $ avg.width
k.best <- which.max(asw)

cat("silhouette-optimal number of clusters:", k.best, "\n")
plot(pam(d, k.best))

# K-Means Cluster Analysis
fit <- kmeans(mydata,k.best)
mydata 
# get cluster means 
aggregate(mydata,by=list(fit$cluster),FUN=mean)
# append cluster assignment
mydata <- data.frame(mydata, clusterid=fit$cluster)
plot(mydata$x,mydata$y, col = fit$cluster, main="K-means Clustering results")

Hope it helps!!


Basically, you want to find a balance between two variables: the number of clusters (k) and the average variance of the clusters. You want to minimize the former while also minimizing the latter. Of course, as the number of clusters increases, the average variance decreases (up to the trivial case of k=n and variance=0).

As always in data analysis, there is no one true approach that works better than all others in all cases. In the end, you have to use your own best judgement. For that, it helps to plot the number of clusters against the average variance (which assumes that you have already run the algorithm for several values of k). Then you can use the number of clusters at the knee of the curve.


You can maximize the Bayesian Information Criterion (BIC):

BIC(C | X) = L(X | C) - (p / 2) * log n

where L(X | C) is the log-likelihood of the dataset X according to model C, p is the number of parameters in the model C, and n is the number of points in the dataset. See "X-means: extending K-means with efficient estimation of the number of clusters" by Dan Pelleg and Andrew Moore in ICML 2000.

Another approach is to start with a large value for k and keep removing centroids (reducing k) until it no longer reduces the description length. See "MDL principle for robust vector quantisation" by Horst Bischof, Ales Leonardis, and Alexander Selb in Pattern Analysis and Applications vol. 2, p. 59-72, 1999.

Finally, you can start with one cluster, then keep splitting clusters until the points assigned to each cluster have a Gaussian distribution. In "Learning the k in k-means" (NIPS 2003), Greg Hamerly and Charles Elkan show some evidence that this works better than BIC, and that BIC does not penalize the model's complexity strongly enough.