How Do I fill the Area of a Polar Plot

We can use ParametricPlot instead of PolarPlot to construct the region. Here we change the definition of domain from π/2 to 2 π + π/2 in order to make the boundary of region fine.

ρ[a_, θ_] := a (1 - Sin[θ]);
region = ParametricPlot[ρ[a, θ]*{Cos[θ], 
     Sin[θ]}, {θ, π/2, 2 π + π/2}, {a, 0, 
   2}, Axes -> False, BoundaryStyle -> {Thick, Brown}, 
  PlotStyle -> Green, PlotPoints -> 30]

enter image description here

Your animation maybe as this:

ρ[a_, θ_] := a (1 - Sin[θ]);
region[c_] := 
  ParametricPlot[{ρ[a, θ]*{Cos[θ], 
      Sin[θ]}}, {θ, π/2, 2 π + π/2}, {a, 0, 
    c}, Axes -> False, BoundaryStyle -> {Thick, Brown}, 
   PlotStyle -> Green, PlotPoints -> 30, PerformanceGoal -> "Quality"];

Manipulate[{PolarPlot[10 (1 - Sin[θ]), {θ, 0, 2 π}, 
    PolarGridLines -> Automatic, PlotRange -> 20], region[a]} // 
  Show, {a, 1, 10}]

You can post-process PolarPlot output to add FilledCurves:

PolarPlot[Evaluate @ Table[a (1 - Sin[θ]), {a, 10, 1, -1}], {θ, 0, 2 π}, 
  Axes -> False, ImageSize -> Large, PlotLegends -> "Expressions"] /. 
 l_Line :> {l, Dynamic[Lighter@Lighter@CurrentValue["Color"]], FilledCurve[l]}

enter image description here

pp = PolarPlot[5 (1 - Sin[θ])^2, {θ, 0, 2 π}, 
  PolarGridLines -> True, PlotRange -> All, PlotStyle -> None]; 

Manipulate[Show[pp, PolarPlot[(a/2) (1 - Sin[θ])^2, {θ, 0, 2 π}] /. 
       l_Line -> {l, Opacity[.5], FilledCurve[l]}, 
     PlotLabel -> "Polar Graph of the Cardioid: " <> 
       ToString[a / 2 (1 - Sin[θ]) , TraditionalForm]],
  {a, 1, 10}]

enter image description here