How do I take a rolling product using data.table
Here are two ways.. albeit not the most efficient implementations possible:
require(data.table)
N = 3L
dt[, prod := prod(dt$x[.I:(.I+N-1L)]), by=1:nrow(dt)]
Another one using embed()
:
tmp = apply(embed(dt$x, N), 1, prod)
dt[seq_along(tmp), prod := tmp]
Benchmarks:
set.seed(1L)
dt = data.table(x=runif(1e6))
zoo_fun <- function(dt, N) {
rollapply(dt$x, N, FUN=prod, fill=NA, align='left')
}
dt1_fun <- function(dt, N) {
dt[, prod := prod(dt$x[.I:(.I+N-1L)]), by=1:nrow(dt)]
dt$prod
}
dt2_fun <- function(dt, N) {
tmp = apply(embed(dt$x, N), 1L, prod)
tmp[1:nrow(dt)]
}
david_fun <- function(dt, N) {
Reduce(`*`, shift(dt$x, 0:(N-1L), type="lead"))
}
system.time(ans1 <- zoo_fun(dt, 3L))
# user system elapsed
# 8.879 0.264 9.221
system.time(ans2 <- dt1_fun(dt, 3L))
# user system elapsed
# 10.660 0.133 10.959
system.time(ans3 <- dt2_fun(dt, 3L))
# user system elapsed
# 1.725 0.058 1.819
system.time(ans4 <- david_fun(dt, 3L))
# user system elapsed
# 0.009 0.002 0.011
all.equal(ans1, ans2) # [1] TRUE
all.equal(ans1, ans3) # [1] TRUE
all.equal(ans1, ans4) # [1] TRUE
Here's another possible version using data.table::shift
combined with Reduce
(as per @Aruns comment)
library(data.table) #v1.9.6+
N <- 3L
dt[, Prod3 := Reduce(`*`, shift(x, 0L:(N - 1L), type = "lead"))]
shift
is vectorized, meaning it can create several new columns at once depending on the vector passed to the n
argument. Then, Reduce
is basically applies *
to all the vectors at once element-wise.
you can try
library(zoo)
rollapply(dt, 3, FUN = prod)
x
[1,] 0.7200
[2,] 0.5400
[3,] 0.3000
[4,] 0.0375
To match the expected output
dt[, Prod.3 :=rollapply(x, 3, FUN=prod, fill=NA, align='left')]